Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran

Ore Geology Reviews - Tập 91 - Trang 1066-1080 - 2017
Alireza Almasi1, Mahyar Yousefi2, Emmanuel John M. Carranza3,4,5
1Science and Research Branch, Islamic Azad University, Tehran, Iran
2Faculty of Engineering, Malayer University, Malayer, Iran
3Geological Sciences, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, South Africa
4Economic Geology Research Centre (EGRU), James Cook University, Queensland, Australia
5Institute of Geosciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil

Tài liệu tham khảo

Agterberg, 2005, Measuring the performance of mineral-potential maps, Nat. Resour. Res., 14, 1, 10.1007/s11053-005-4674-0 Airo, 2001, Aeromagnetic and aeroradiometric response to hydrothermal alteration, Surv. Geophys., 23, 273, 10.1023/A:1015556614694 Airo, 2007, Application of aerogeophysical data for gold exploration: implications for the central lapland greenstone belt, Geol. Surv. Finland Spec. Pap., 44, 187 Akima, 1970, A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Machinery, 17, 589, 10.1145/321607.321609 Alavi, 1980, Tectonostratigraphic evolution of the Zagrosides of Iran, Geology, 8, 144, 10.1130/0091-7613(1980)8<144:TEOTZO>2.0.CO;2 Alavi, 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics, 229, 211, 10.1016/0040-1951(94)90030-2 Aliyari, 2007, Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran, Resour. Geol., 57, 269, 10.1111/j.1751-3928.2007.00022.x Aliyari, 2009, Geology and geochemistry of D-O-C isotope systematics of the Qolqoleh Gold Deposit, Northwestern Iran; implications for ore genesis, Ore Geol. Rev., 36, 306, 10.1016/j.oregeorev.2009.06.003 Aliyari, 2012, Gold Deposits in the Sanandaj-Sirjan Zone: Orogenic Gold Deposits or Intrusion-Related Gold systems?, Resour. Geol, 62, 296, 10.1111/j.1751-3928.2012.00196.x Aliyari, 2006 Almasi, 2014, Evaluation of structural and geological factors in orogenic gold type mineralization in the Kervian area, north-west Iran, using airborne geophysical data, Explor. Geophys., 45, 261, 10.1071/EG13053 Almasi, 2015, Orogenic Gold Prospectivity Mapping Using Geospatial Data Integration, Region of Saqez, NW of Iran, Bull. Miner. Res. Explor., 150, 65 Almasi, 2015, Prospecting of gold mineralization in Saqez area (NW Iran) using geochemical, geophysical and geological studies based on multifractal modelling and principal component analysis, Arabian J. Geosci., 8–8, 5935, 10.1007/s12517-014-1625-2 Alpaydm, 2004 An, 1991, Application of fuzzy set theory for integration of geological, geophysical and remote sensing data, Can. J. Exp. Geophys., 27, 1 Archibald, 1999, Multiscale edge analysis of potential field data, Explor. Geophys., 30, 38, 10.1071/EG999038 Asadi, 2015, Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran, Ore Geol. Rev., 71, 819, 10.1016/j.oregeorev.2014.12.001 Asadi, 2016, An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: a case study from Salafchegan Area (Central Iran), Nat. Resour. Res., 25, 417, 10.1007/s11053-016-9290-7 Austin, 2008, The Cloncurry Lineament: geophysical and geological evidence for a deep crustal structure in the Eastern Succession of the Mount Isa Inlier, Precambr. Res., 163, 50, 10.1016/j.precamres.2007.08.012 Austin, 2009, Local to regional scale structural controls on mineralisation and the importance of a major lineament in the eastern Mount Isa Inlier, Australia: review and analysis with autocorrelation and weights of evidence, Ore Geol. Rev., 35, 298, 10.1016/j.oregeorev.2009.03.004 Babakhani A.R., Hariri A., Farjandi F., 2003. Geological map of Saqez (1:100000 scale). Geological Survey of Iran (GSI). Baranov, 1957, A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies, Geophysics, 22, 359, 10.1190/1.1438369 Bark, 2012, Geodynamic settings for Paleoproterozoic gold mineralization in the Svecofennian domain: A tectonic model for the Fäboliden orogenic gold deposit, northern Sweden, Ore Geol. Rev., 48, 403, 10.1016/j.oregeorev.2012.05.007 Beaudoin, 2006, 3D numerical modelling of fluid flow in the Val-d’Or orogenic gold district: major crustal shear zones drain fluids from overpressured vein fields, Miner. Deposita, 41, 82, 10.1007/s00126-005-0043-5 Berberian, 1981, Towards a paleogeography and tectonic evolution of Iran, Can. J. Earth Sci., 18, 210, 10.1139/e81-019 Berthold, 2002 Betts, 2002, Geodynamically indicated targeting strategy for shale-hosted massive sulfide Pb–Zn–Ag mineralisation in the Western Fold Belt, Mt, Isa terrane: Aust. J. Earth Sci., 49, 985 Bierlein, 2005, Possible intrusion-related gold systems in the western Lachlan Orogen, southeast Australia, Econ. Geol., 100, 385 Bierlein, 2006, Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, Western Australia, Miner. Deposita, 41, 107, 10.1007/s00126-005-0044-4 Bierlein, 2006, Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits, Miner. Deposita, 40, 874, 10.1007/s00126-005-0046-2 Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer Science+Business Media. LLC, 233 Spring Street, New York, NY 10013, USA. Bonham-Carter, 1984, Autocorrelation structure of stream-sediment geochemical data: interpretation of Zn and Pb anomalies, Nahanni River area, Yukon-Northwest Territories, Canada, Geostat. Nat. Resour. Charact., pt, 2, 817 Bonham-Carter, 1986, Background corrections to stream geochemical data using digitized drainage and geological maps: application to Selwyn Basin, Yukon and Northwest Territories, J. Geochem. Explor., 25, 139, 10.1016/0375-6742(86)90011-7 Bonham-Carter, 1994 Burrough, 1998 Carranza, 1997, A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines, J. Geochem. Explor., 60, 157, 10.1016/S0375-6742(97)00032-0 Carranza, 2002, Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines, Nat. Resour. Res., 11, 45, 10.1023/A:1014287720379 Carranza, 2015, Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines), Comput. Geosci., 74, 60, 10.1016/j.cageo.2014.10.004 Carranza, 2016, Data-driven predictive modeling of mineral prospectivity using Random Forests: a case study in Catanduanes Island (Philippines), Nat. Resour. Res., 25, 35, 10.1007/s11053-015-9268-x Carranza, 2005, Application of Data-Driven Evidential Belief Functions to Prospectivity Mapping for Aquamarine-Bearing Pegmatites, Lundazi District, Zambia, Nat. Resour. Res., 14, 47, 10.1007/s11053-005-4678-9 Carranza, 2015, Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa), Ore Geol. Rev., 71, 703, 10.1016/j.oregeorev.2014.10.030 Carranza, 2008, Geochemical Anomaly and Mineral Prospectivity Mapping in GIS, Vol. 11 Carranza, 2009, Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity, Comput. Geosci., 35, 2032, 10.1016/j.cageo.2009.02.008 Carranza, 2010, Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes, Geochem. Explor. Environ. Anal., 10, 171, 10.1144/1467-7873/09-223 Carranza, 2014, Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values, Nat. Resour. Res., 24, 291, 10.1007/s11053-014-9250-z Carranza, 2017, Natural Resources Research publications on geochemical anomaly and mineral potential mapping, and introduction to the special issue of papers in these fields, Nat. Resour. Res., 26, 379, 10.1007/s11053-017-9348-1 Celikyilmaz, 2009 Cheng, 1999, Fuzzy weights of evidence method and its application in mineral potential mapping, Nat. Resour. Res., 8, 27, 10.1023/A:1021677510649 Cheng, 2009, Singularity analysis of ore-mineral and toxic trace elements in stream sediments, Comput. Geosci., 35, 34, 10.1016/j.cageo.2008.02.034 Cheng, 1994, The separation of geochemical anomalies from background by fractal methods, J. Geochem. Explor., 51, 109, 10.1016/0375-6742(94)90013-2 Cheng, 2007, Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China, Ore Geol. Rev., 32, 314, 10.1016/j.oregeorev.2006.10.002 Chung, 2003, Validation of spatial prediction models for landslide hazard mapping, Nat. Hazards, 30, 451, 10.1023/B:NHAZ.0000007172.62651.2b Coolbaugh, 2007, Assessment of Exploration Bias in Data-Driven Predictive Models and the Estimation of Undiscovered Resources, Nat. Resour. Res., 16, 199, 10.1007/s11053-007-9037-6 Craw, 2006, Structural controls on Tertiary orogenic gold mineralization during initiation of a mountain belt, New Zealand, Miner. Deposita, 41, 645, 10.1007/s00126-006-0088-0 Cross, 2005, New constraints on the timing of deposition and mineralisation in the Tanami Group (abstract), North. Territory Geol. Surv. Rec. De Quadros, 2003, Gamma-Ray Data Processing and Integration for Lode-Au Deposits Exploration, Nat. Resour. Res., 12, 57, 10.1023/A:1022608505873 De Souza Filho, 2007, Spatial analysis of airborne geophysical data applied to geological mapping and mineral prospecting in the Serra Leste region, Carajás Mineral Province, Brazil, Surv. Geophys., 28, 377, 10.1007/s10712-008-9031-5 Duarte Campos, 2017, Predictive mapping of prospectivity in the Gurupi Orogenic Gold Belt, North–Northeast Brazil: an example of district-scale mineral system approach to exploration targeting, Nat. Resour. Res. Eftekharnejad, 1981, Tectonic division of Iran with respect to sedimentary basins, J. Iran. Pet. Soc., 82, 19 Ferreira, 2011, Enhancement of the total horizontal gradient of magnetic anomalies using tilt derivatives: Part II — Application to real data, SEG Technical Program Expanded Abstracts, 2011, 887, 10.1190/1.3628216 Fink, 2007 Ford, 2016, A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation, Nat. Resour. Res., 25, 19, 10.1007/s11053-015-9263-2 Fraser, G., 2002. Geochronology of Tanami ores and host rocks. Northern Territory Geological Survey Record 2002/0003. Fu, 2012, New constraints on fluid sources in orogenic gold deposits, Victoria, Australia, Contrib. Miner. Petrol., 163, 427, 10.1007/s00410-011-0678-4 Ghasemi, 2006, A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran), J. Asian Earth Sci., 26, 683, 10.1016/j.jseaes.2005.01.003 Goldfarb, 2015, Orogenic gold: Common or evolving fluid and metal sources through time, Lithos, 233, 2, 10.1016/j.lithos.2015.07.011 Goldfarb, 2001, Orogenic gold and geologic time: a global synthesis, Ore Geol. Rev., 18, 1, 10.1016/S0169-1368(01)00016-6 Grauch, 2003, Geophysical and Isotopic Constraints on Crustal Structure Related to Mineral Trends in North-Central Nevada and Implications for Tectonic History, Econ. Geol., 98, 269 Groves, 1998, Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geol. Rev., 13, 7, 10.1016/S0169-1368(97)00012-7 Groves, 2000, Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia, Ore Geol. Rev., 17, 1, 10.1016/S0169-1368(00)00002-0 Groves, 1993, The crustal continuum model for Late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia, Miner. Deposita, 28, 366, 10.1007/BF02431596 Haynes, 2000, Iron oxide copper (-gold) deposits: their position in the ore deposit spectrum and modes of origin, 71 Heidari, 2006, Gold mineralization in ductile shear zone of Kervian (southwest of Saqez-Kordestan province), Geosciences, 58, 18 Heidari S.M., 2004. Mineralogy, geochemistry and fabrics of gold mineralization in the Kervian ductile shear zone (southwest of Saqez, Kordestan province). University of Tarbiat Modares, Tehran, Iran, M.Sc. thesis, 245 pp (in Persian). Hengl, 2006, Finding the right pixel size, Comput. Geosci., 32, 1283, 10.1016/j.cageo.2005.11.008 Henson, 2010, 4D architecture and tectonic evolution of the Laverton region, eastern Yilgarn Craton, Western Australia, Precambr. Res., 183, 338, 10.1016/j.precamres.2010.08.003 Herbert, 2014, Predictive mapping of prospectivity for orogenic gold in Uganda, J. Afr. Earth Sc., 99, 666, 10.1016/j.jafrearsci.2014.03.001 Holden, 2000, Inferring geological structures using wavelet-based multiscale edge analysis and forward models, Explor. Geophys., 31, 617, 10.1071/EG00617 Joly, 2012, Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis, Ore Geol. Rev., 48, 349, 10.1016/j.oregeorev.2012.05.004 Kemp, L., Bonham-Carter, G.F., Raines, G.L., Looney, C.G., 2001, ArcSDM and DataXplore – spatial data modeler for Arcview and Spatial Analyst http://ntserv.gis.nrcan.gc.ca/sdm/. Knox-Robinson, 2000, Vectorial fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia, Aust. J. Earth Sci., 47, 929, 10.1046/j.1440-0952.2000.00816.x Li, 2013, Improved edge detection tools in the interpretation of potential field data, Explor. Geophys., 44, 128, 10.1071/EG12058 Lisitsin, 2010, Undiscovered orogenic gold endowment in Northern Victoria, Australia, Ore Geol. Rev., 38, 251, 10.1016/j.oregeorev.2010.03.007 Lisitsin, 2013, Regional prospectivity analysis for hydrothermal-remobilised nickel mineral systems in western Victoria, Australia, Ore Geol. Rev., 52, 100, 10.1016/j.oregeorev.2012.04.001 Luo, 2003, Data-driven fuzzy analysis in quantitative mineral resource assessment, Comput. Geosci., 29, 3, 10.1016/S0098-3004(02)00078-X Luo, 1990, Statistical mineral prediction without defining a training area, Math. Geol., 22, 253, 10.1007/BF00889888 Lusty, 2012, Reconnaissance-Scale Prospectivity Analysis for Gold Mineralisation in the Southern Uplands-Down-Longford Terrane, Northern Ireland, Nat. Resour. Res., 21, 359, 10.1007/s11053-012-9183-3 Ma, 2012, Edge detection in potential fields with the normalized total horizontal derivative, Comput. Geosci., 41, 83, 10.1016/j.cageo.2011.08.016 Magalhães, 2012, Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data, Surv. Geophys., 33, 211, 10.1007/s10712-011-9151-1 Masters, 1993 McCuaig, 2010, Translating the mineral systems approach into an effective targeting system, Ore Geol. Rev., 38, 128, 10.1016/j.oregeorev.2010.05.008 McKay, 2016, Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada, Nat. Resour. Res., 25, 125, 10.1007/s11053-015-9274-z Mejía-Herrera, 2014, Curvature attribute from surface-restoration as predictor variable in Kupferschiefer copper potentials. An example from the Fore-Sudetic Region, Nat. Resour. Res., 24, 275, 10.1007/s11053-014-9247-7 Micheli-Tzanakou, 1999 Mihalasky, 2001, Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada, Nat. Resour. Res., 10, 209, 10.1023/A:1012569225111 Miller, 1994, Potential field tilt - a new concept for location of potential field sources, J. Appl. Geophys., 32, 213, 10.1016/0926-9851(94)90022-1 Mohajjel, 2003, Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran, J. Asian Earth Sci., 21, 397, 10.1016/S1367-9120(02)00035-4 Moon, 1999, Towards a quantitative model of downstream dilution of point source geochemical anomalies, J. Geochem. Explor., 65, 111, 10.1016/S0375-6742(98)00065-X Murphy, 1992, Mountain belts and the supercontinent cycle, Sci. Am., 266, 84, 10.1038/scientificamerican0492-84 Mutele, 2017, Knowledge-driven prospectivity mapping for granite-related polymetallic Sn–F–(REE) mineralization, Bushveld Igneous Complex, South Africa. Nykänen, 2007, Prospectivity analysis of gold using regional geophysical and geochemical data from the Central Lapland Greenstone Belt, Finland, Geol. Surv. Finland Spec. Pap., 44, 251 Nykänen, 2008, Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the Northern Fennoscandian Shield, Finland, Aust. J. Earth Sci., 55, 25, 10.1080/08120090701581372 Nykänen, 2008, Combined conceptual/empirical prospectivity mapping for orogenic gold in the Northern Fennoscandian Shield, Finland, Aust. J. Earth Sci., 55, 39, 10.1080/08120090701581380 Nykänen, 2015, Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland, Ore Geol. Rev., 71, 853, 10.1016/j.oregeorev.2014.09.007 Nykänen, 2017, Optimizing a knowledge-driven prospectivity model for gold deposits within Peräpohja Belt, Northern Finland, Nat. Resour. Res., 10.1007/s11053-016-9321-4 Nykänen, 2008, Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield, Nat. Resour. Res., 17, 29, 10.1007/s11053-008-9062-0 Parsa, 2016, Prospectivity modeling of Porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures, J. Afr. Earth Sc., 114, 228, 10.1016/j.jafrearsci.2015.12.007 Parsa, 2016, Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran, J. Geochem. Explor., 165, 111, 10.1016/j.gexplo.2016.03.009 Parsa, 2017, Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets, J. Afr. Earth Sc., 128, 5, 10.1016/j.jafrearsci.2016.11.021 Parsa, 2017, Multifractal analysis of stream sediment geochemical data: implications for hydrothermal nickel prospection in an arid terrain, eastern Iran, J. Geochem. Explor., 10.1016/j.gexplo.2016.11.013 Porwal, 2010, Introduction to the Special Issue: mineral prospectivity analysis and quantitative resource estimation, Ore Geol. Rev., 38, 121, 10.1016/j.oregeorev.2010.06.002 Porwal, 2003, Extended weights-of-evidence modelling for predictive mapping of base metal deposit potential in Aravalli province, western India, Explor. Min. Geol., 10, 155 Porwal, 2003, Artificial neural networks for mineral potential mapping: A Case Study from Aravalli Province, Western India, Nat. Resour. Res., 12, 155, 10.1023/A:1025171803637 Porwal, 2003, Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping, Nat. Resour. Res., 12, 1, 10.1023/A:1022693220894 Porwal, 2004, A hybrid neuro-fuzzy model for mineral potential mapping, Math. Geol., 36, 803, 10.1023/B:MATG.0000041180.34176.65 Porwal, 2006, A hybrid fuzzy weights-of-evidence model for mineral potential mapping, Nat. Resour. Res., 15, 1, 10.1007/s11053-006-9012-7 Salem, 2007, Tiltdepth method: a simple depth estimation method using first-order magnetic derivatives, Lead. Edge, 26, 1502, 10.1190/1.2821934 Sillitoe, 2000, Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery, Rev. Econ. Geol., 13, 315 Silva, 2003, Application of airborne geophysical data to mineral exploration in the uneven exposed terrains of the Rio das Velhas greenstone belt, Revista Brasileira de Geociências, 33, 17, 10.25249/0375-7536.200333S21728 Smith, 1990, Gridding with continuous curvature splines in Tension, Geophysics, 55, 293, 10.1190/1.1442837 Spadoni, 2004, Cartographic techniques for mapping the geochemical data of stream sediments: the “sample catchment basin” approach, Environ. Geol., 45, 593, 10.1007/s00254-003-0926-7 Spadoni, 2006, Geochemical mapping using a geomorphologic approach based on catchments, J. Geochem. Explor., 90, 183, 10.1016/j.gexplo.2005.12.001 Stocklin, J., 1968. Structural History and Tectonics of Iran: A Review. AAPG (American Association of Petroleum Geologists) Bulletin, 52, 1229–1258. Tajeddin, 2011 Takin, 1972, Iranian geology and continental drift in the middle east, Nature, 235, 147, 10.1038/235147a0 Theodoridis, 2006, Clustering: basic concepts, Pattern Recogn., 483, 10.1016/B978-012369531-4/50011-1 Thompson, 1976, Duplicate analysis in geochemical practice. Part 1: theoretical approach and estimation of analytical reproducibility, Analyst, 101, 690, 10.1039/an9760100690 Tsoukalas, 1997, 606 Van Loon, 2002, The complexity of simple geology, Earth Sci. Rev., 59, 287, 10.1016/S0921-8181(02)00164-9 Verduzco, 2004, New insights into magnetic derivatives for structural mapping, Lead. Edge, 23, 116, 10.1190/1.1651454 Yousefi, 2015, Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping, Comput. Geosci., 74, 97, 10.1016/j.cageo.2014.10.014 Yousefi, 2015, Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling, Comput. Geosci., 79, 69, 10.1016/j.cageo.2015.03.007 Yousefi, 2015, Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping, Comput. Geosci., 83, 72, 10.1016/j.cageo.2015.07.006 Yousefi, 2016, Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration, Nat. Resour. Res., 25, 3, 10.1007/s11053-014-9261-9 Yousefi, 2016, Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values, J. Afr. Earth Sc. Yousefi, 2016, Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping, J. Geochem. Explor., 164, 94, 10.1016/j.gexplo.2015.10.008 Yousefi, 2012, Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping, J. Geochem. Explor., 115, 24, 10.1016/j.gexplo.2012.02.002 Yousefi, 2013, Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping, J. Geochem. Explor., 128, 88, 10.1016/j.gexplo.2013.01.013 Yousefi, 2014, Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping, Geochem. Explor. Environ. Anal., 14, 45, 10.1144/geochem2012-144 Yousefi, 2017, Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran, Ore Geol. Rev., 83, 200, 10.1016/j.oregeorev.2016.12.024 Zadeh, L.A., 1993. Fuzzy logic, neural networks and soft computing. In Safety Evaluation Based on Identification Approaches Related to Time-Variant and Nonlinear Structures (pp. 320–321). Vieweg+ Teubner Verlag. Zuo, 2015, Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: a case study with skarn-type Fe deposits in Southwestern Fujian Province, China, Ore Geol. Rev., 71, 502, 10.1016/j.oregeorev.2014.09.024 Zuo, 2012, Exploring the effects of cell size in geochemical mapping, J. Geochem. Explor., 112, 357, 10.1016/j.gexplo.2011.11.001