An improved complex fractional moment-based approach for the probabilistic characterization of random variables
Tài liệu tham khảo
Papoulis, 2002
Dai, 2017, A new fractional wavelet transform, Commun. Nonlinear Sci. Numer. Simul., 44, 19, 10.1016/j.cnsns.2016.06.034
Dai, 2017, Nonlinear system stochastic response determination via fractional equivalent linearization and Karhunen-Loeve expansion, Commun. Nonlinear Sci. Numer. Simul., 49, 145, 10.1016/j.cnsns.2017.01.033
Dai, 2017, On generalized fractional vibration equation, Chaos Solitons Fractals, 95, 48, 10.1016/j.chaos.2016.12.006
Dai, 2017, A wavelet support vector machine-based neural network metamodel for structural reliability assessment, Comput.-Aided Civ. InfraStruct. Eng., 32, 344, 10.1111/mice.12257
Zheng, 2018, A new fractional equivalent linearization method for nonlinear stochastic dynamic analysis, Nonlinear Dynam., 91, 1075, 10.1007/s11071-017-3929-8
Zhang, 2017, An effective approach for probabilistic lifetime modelling based on the principle of maximum entropy with fractional moments, Appl. Math. Model., 51, 626, 10.1016/j.apm.2017.07.036
Zhang, 2013, Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method, Struct. Saf., 43, 28, 10.1016/j.strusafe.2013.03.001
Milev, 2012, Moment information and entropy evaluation for probability densities, Appl. Math. Comput., 218, 5782, 10.1016/j.amc.2011.11.093
Gzyl, 2006, Maxentropic solution of fractional moment problems, Appl. Math. Comput., 173, 109, 10.1016/j.amc.2005.02.061
Novi Inverardi, 2005, Stieltjes moment problem via fractional moments, Appl. Math. Comput., 166, 664, 10.1016/j.amc.2004.06.060
Cottone, 2009, On the use of fractional calculus for the probabilistic characterization of random variables, Probab. Eng. Mech., 24, 321, 10.1016/j.probengmech.2008.08.002
Cottone, 2010, Fractional calculus approach to the statistical characterization of random variables and vectors, Physica A, 389, 909, 10.1016/j.physa.2009.11.018
Di Paola, 2012, Riesz fractional integrals and complex fractional moments for the probabilistic characterization of random variables, Probab. Eng. Mech., 29, 149, 10.1016/j.probengmech.2011.11.003
Alotta, 2015, Probabilistic characterization of nonlinear systems under a-stable white noise via complex fractional moments, Physica A, 420, 265, 10.1016/j.physa.2014.10.091
Di Matteo, 2014, Poisson white noise parametric input and response by using complex fractional moments, Probab. Eng. Mech., 38, 119, 10.1016/j.probengmech.2014.07.003
Di Paola, 2014, Fokker Planck equation solved in terms of complex fractional moments, Probab. Eng. Mech., 38, 70, 10.1016/j.probengmech.2014.09.003
Butera, 2014, Fractional differential equations solved by using Mellin transform, Commun. Nonlinear Sci. Numer. Simul., 19, 2220, 10.1016/j.cnsns.2013.11.022
Samko, 1993