SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation

Nature - Tập 464 Số 7285 - Trang 121-125 - 2010
Matthew D. Hirschey1, Tadahiro Shimazu1, Eric S. Goetzman2, Enxuan Jing3, Bjoern Schwer1, David B. Lombard4, Carrie A. Grueter5, Charles Harris5, Sudha B. Biddinger3, Olga Ilkayeva6, Robert D. Stevens6, Yu Li7, Asish K. Saha8, Neil B. Ruderman8, James R. Bain6, Christopher B. Newgard6, Robert V. Farese5, Frederick W. Alt4, C. Ronald Kahn3, Eric Verdin9
1Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA ,
2Department of Pediatrics, The Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA,
3Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
4Department of Genetics, Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, The Children’s Hospital, Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA,
5Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158, USA ,
6Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina 27704, USA ,
7Cell Signaling Technology, Danvers, Massachusetts 01923, USA ,
8Department of Medicine, Physiology, and Biophysics and the Diabetes Unit, Boston University Medical Center, Boston, Massachusetts 02118, USA,
9Department of Medicine, University of California San Francisco, California 94143, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA 103, 10224–10229 (2006)

Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006)

Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807–8814 (2007)

Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006)

Guarente, L. Sirtuins as potential targets for metabolic syndrome. Nature 444, 868–874 (2006)

Schwer, B. & Verdin, E. Conserved metabolic regulatory functions of sirtuins. Cell Metab. 7, 104–112 (2008)

Schwer, B. et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8, 604–606 (2009)

Cox, K. B. et al. Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum. Mol. Genet. 10, 2069–2077 (2001)

Kurtz, D. M. et al. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. Proc. Natl Acad. Sci. USA 95, 15592–15597 (1998)

Zhang, D. et al. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc. Natl Acad. Sci. USA 104, 17075–17080 (2007)

Son, C. G. et al. Database of mRNA gene expression profiles of multiple human organs. Genome Res. 15, 443–450 (2005)

Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008)

Schuler, A. M. & Wood, P. A. Mouse models for disorders of mitochondrial fatty acid beta-oxidation. ILAR J 43, 57–65 (2002)

Tolwani, R. J. et al. Medium-chain acyl-CoA dehydrogenase deficiency in gene-targeted mice. PLoS Genet. 1, e23 (2005)

Herrema, H. et al. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice. Hepatology 47, 1894–1904 (2008)

Spiekerkoetter, U. et al. Evidence for impaired gluconeogenesis in very long-chain acyl-CoA dehydrogenase-deficient mice. Horm. Metab. Res. 38, 625–630 (2006)

Zhang, W., Della-Fera, M. A., Hartzell, D., Hausman, D. & Baile, C. Adipose tissue gene expression profiles in ob/ob mice treated with leptin. Life Sci. 83, 35–42 (2008)

Yechoor, V. K. et al. Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: an in vivo analysis in MIRKO mice. Proc. Natl Acad. Sci. USA 101, 16525–16530 (2004)

Schwer, B., North, B. J., Frye, R. A., Ott, M. & Verdin, E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 158, 647–657 (2002)

Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007)

McGarry, J. D. & Foster, D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49, 395–420 (1980)

Eaton, S., Bartlett, K. & Pourfarzam, M. Mammalian mitochondrial β-oxidation. Biochem. J. 320, 345–357 (1996)

Shibata, M., Kihara, Y., Taguchi, M., Tashiro, M. & Otsuki, M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 30, 2940–2944 (2007)

Targher, G. et al. Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes 54, 3541–3546 (2005)

Hsiao, P. J. et al. Significant correlations between severe fatty liver and risk factors for metabolic syndrome. J. Gastroenterol. Hepatol. 22, 2118–2123 (2007)

Kim, J. Y., Hickner, R. C., Cortright, R. L., Dohm, G. L. & Houmard, J. A. Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E1039–E1044 (2000)

Frerman, F. E. & Goodman, S. I. Fluorometric assay of acyl-CoA dehydrogenases in normal and mutant human fibroblasts. Biochem. Med. 33, 38–44 (1985)

Bennett, M. J. Assays of fatty acid β-oxidation activity. Methods Cell Biol. 80, 179–197 (2007)

Srere, P. A. Citrate synthase. Methods Enzymol. 13, 3–11 (1969)

Wu, J. Y. et al. ENU mutagenesis identifies mice with mitochondrial branched-chain aminotransferase deficiency resembling human maple syrup urine disease. J. Clin. Invest. 113, 434–440 (2004)

Jensen, M. V. et al. Compensatory responses to pyruvate carboxylase suppression in islet β-cells. Preservation of glucose-stimulated insulin secretion. J. Biol. Chem. 281, 22342–22351 (2006)

Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)

Morrison, W. R. & Smith, L. M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5, 600–608 (1964)

Oliver, H. & Lowry, J. V. P. A Flexible System of Enzymatic Analysis (Academic Press, 1972)

Saha, A. K. et al. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem. Biophys. Res. Commun. 314, 580–585 (2004)

Stremmel, W. & Berk, P. D. Hepatocellular influx of [14C]oleate reflects membrane transport rather than intracellular metabolism or binding. Proc. Natl Acad. Sci. USA 83, 3086–3090 (1986)

Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007)

Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnol. 23, 94–101 (2005)

Graham, J. M. Isolation of mitochondria from tissues and cells by differential centrifugation. Curr. Protocols Cell Biol. (suppl. 4), unit 3.3 (1999)

Graham, J. M. Purification of a crude mitochondrial fraction by density-gradient centrifugation. Curr. Protocols Cell Biol. (suppl. 4), unit 3.4 (1999)

Hirschey, M. D., Shimazu, T., Huang, J. & Verdin, E. Acetylation of mitochondrial proteins. Methods Enzymol. 457, 137–147 (2009)

Taniguchi, C. M., Ueki, K. & Kahn, R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J. Clin. Invest. 115, 718–727 (2005)

Ueki, K., Kondo, T., Tseng, Y. H. & Kahn, C. R. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc. Natl Acad. Sci. USA 101, 10422–10427 (2004)