Human umbilical endothelial cells (HUVECs) have a sex: characterisation of the phenotype of male and female cells

Springer Science and Business Media LLC - Tập 5 - Trang 1-12 - 2014
Roberta Addis1, Ilaria Campesi1,2, Marco Fois1, Giampiero Capobianco3, Salvatore Dessole3, Grazia Fenu1, Andrea Montella1, Maria Grazia Cattaneo4, Lucia M Vicentini4, Flavia Franconi1,2,5
1Department of Biomedical Sciences, University of Sassari, Sassari, Italy
2National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy
3Department of Surgical, Microsurgical and Medical Sciences, Gynaecologic and Obstetric Clinic, University of Sassari, Sassari, Italy
4Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
5Assessorato alle Politiche per la Persona, Region Basilicata, Italy

Tóm tắt

Human umbilical endothelial cells (HUVECs) are widely used to study the endothelial physiology and pathology that might be involved in sex and gender differences detected at the cardiovascular level. This study evaluated whether HUVECs are sexually dimorphic in their morphological, proliferative and migratory properties and in the gene and protein expression of oestrogen and androgen receptors and nitric oxide synthase 3 (NOS3). Moreover, because autophagy is influenced by sex, its degree was analysed in male and female HUVECs (MHUVECs and FHUVECs). Umbilical cords from healthy, normal weight male and female neonates born to healthy non-obese and non-smoking women were studied. HUVEC morphology was analysed by electron microscopy, and their function was investigated by proliferation, viability, wound healing and chemotaxis assays. Gene and protein expression for oestrogen and androgen receptors and for NOS3 were evaluated by real-time PCR and Western blotting, respectively, and the expression of the primary molecules involved in autophagy regulation [protein kinase B (Akt), mammalian target of rapamycin (mTOR), beclin-1 and microtubule-associated protein 1 light chain 3 (LC3)] were detected by Western blotting. Cell proliferation, migration NOS3 mRNA and protein expression were significantly higher in FHUVECs than in MHUVECs. Conversely, beclin-1 and the LC3-II/LC3-I ratio were higher in MHUVECs than in FHUVECs, indicating that male cells are more autophagic than female cells. The expression of oestrogen and androgen receptor genes and proteins, the protein expression of Akt and mTOR and cellular size and shape were not influenced by sex. Body weights of male and female neonates were not significantly different, but the weight of male babies positively correlated with the weight of the mother, suggesting that the mother’s weight may exert a different influence on male and female babies. The results indicate that sex differences exist in prenatal life and are parameter-specific, suggesting that HUVECs of both sexes should be used as an in vitro model to increase the quality and the translational value of research. The sex differences observed in HUVECs could be relevant in explaining the diseases of adulthood because endothelial dysfunction has a crucial role in the pathogenesis of cardiovascular diseases, diabetes mellitus, neurodegeneration and immune disease.

Tài liệu tham khảo

Sena CM, Pereira AM, Seica R: Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 2013, 1832: 2216–2231. 10.1016/j.bbadis.2013.08.006 Xiao L, Liu Y, Wang N: New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol 2014, 306: H317-H325. 10.1152/ajpheart.00182.2013 Dai R, Ahmed S: Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases. Ther Clin Risk Manag 2014, 10: 151–163. Lyros E, Bakogiannis C, Liu Y, Fassbender K: Molecular links between endothelial dysfunction and neurodegeneration in Alzheimer’s disease. Curr Alzheimer Res 2014, 11: 18–26. 10.2174/1567205010666131119235254 Legato MJ: Principles of Gender-Specific Medicine: 2. 2nd edition. Academic Press, San Diego; 2009. Papakonstantinou NA, Stamou MI, Baikoussis NG, Goudevenos J, Apostolakis E: Sex differentiation with regard to coronary artery disease. J Cardiol 2013, 62: 4–11. 10.1016/j.jjcc.2013.03.001 Kublickiene K, Luksha L: Gender and the endothelium. Pharmacol Rep 2008, 60: 49–60. Shah K, McCormack CE, Bradbury NA: Do you know the sex of your cells? Am J Physiol Cell Physiol 2014, 306: C3-C18. 10.1152/ajpcell.00281.2013 Taylor KE, Vallejo-Giraldo C, Schaible N, Zakeri R, Miller V: Reporting of sex as a variable in cardiovascular studies using cultured cells. Biol Sex Differ 2011, 2: 11. 10.1186/2042-6410-2-11 Wang M, Wang Y, Weil B, Abarbanell A, Herrmann J, Tan J, Kelly M, Meldrum DR: Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 2009, 296: R972-R978. 10.1152/ajpregu.00045.2009 Oviedo PJ, Sobrino A, Laguna-Fernandez A, Novella S, Tarìn JJ, Garcia-Pérez MA, Sanchìs J, Cano A, Hermenegildo C: Estradiol induces endothelial cell migration and proliferation through estrogen receptor-enhanced RhoA/ROCK pathway. Mol Cell Endocrinol 2011, 335: 96. 10.1016/j.mce.2010.06.020 Kublickiene K, Fu XD, Svedas E, Landgren BM, Genazzani AR, Simoncini T: Effects in postmenopausal women of estradiol and medroxyprogesterone alone and combined on resistance artery function and endothelial morphology and movement. J Clin Endocrinol Metabol 2008, 93: 1874–1883. 10.1210/jc.2007-2651 Reckelhoff JF: Sex and sex steroids in cardiovascular-renal physiology and pathophysiology. Gender Med 2008, 1(Supplement 1):S1-S2. 10.1016/j.genm.2008.03.001 Regitz-Zagrosek V, Wintermantel TM, Schubert C: Estrogens and SERMs in coronary heart disease. Curr Opin Pharmacol 2007, 7: 130–139. 10.1016/j.coph.2006.10.009 Kypreos KE, Zafirovic S, Petropoulou PI, Bjelogrlic P, Resanovic I, Traish A, Isenovic ER: Regulation of endothelial nitric oxide synthase and high-density lipoprotein quality by estradiol in cardiovascular pathology. J Cardiovasc Pharmacol Ther 2014, 19: 256–268. 10.1177/1074248413513499 Wu Q, Chambliss K, Umetani M, Mineo C, Shaul PW: Non-nuclear estrogen receptor signaling in the endothelium. J Biol Chem 2011, 286: 14737–14743. 10.1074/jbc.R110.191791 Onat D, Brillon D, Colombo P, Schmidt A: Human vascular endothelial cells: a model system for studying vascular inflammation in diabetes and atherosclerosis. Current Diabetes Reports 2011, 11: 193–202. 10.1007/s11892-011-0182-2 Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998, 91: 3527–3561. Batres RO, Dupont J: Gender differences in prostacyclin and prostaglandin E2 synthesis by human endothelial cells. Prostaglandins Leukot Med 1986, 22: 159–171. 10.1016/0262-1746(86)90085-5 Matarrese P, Colasanti T, Ascione B, Margutti P, Franconi F, Alessandri C, Conti F, Riccieri V, Rosano G, Ortona E, Malorni W: Gender disparity in susceptibility to oxidative stress and apoptosis induced by autoantibodies specific to RLIP76 in vascular cells. Antioxid Redox Signal 2011, 15: 2825–2836. 10.1089/ars.2011.3942 Villar IC, Scotland RS, Khambata RS, Chan M, Duchene J, Sampaio AL, Perretti M, Hobbs AJ, Ahluwalia A: Suppression of endothelial P-selectin expression contributes to reduced cell trafficking in females. Arterioscler Thromb Vasc Biol 2011, 31: 1075–1083. 10.1161/ATVBAHA.111.223545 Gupta NC, Davis CM, Nelson JW, Young JM, Alkayed NJ: Soluble epoxide hydrolase: sex differences and role in endothelial cell survival. Arterioscler Thromb Vasc Biol 2012, 32: 1936–1942. 10.1161/ATVBAHA.112.251520 Straface E, Vona R, Gambardella L, Ascione B, Marino M, Bulzomi P, Canu S, Coinu R, Rosano G, Malorni W, Franconi F: Cell sex determines anoikis resistance in vascular smooth muscle cells. FEBS Lett 2009, 583: 3448–3454. 10.1016/j.febslet.2009.09.052 Du L, Hickey RW, Bayir H, Watkins SC, Tyurin VA, Guo F, Kochanek PM, Jenkins LW, Ren J, Gibson G, Chu CT, Kagan VE, Clark RS: Starving neurons show sex difference in autophagy. J Biol Chem 2009, 284: 2383–2396. 10.1074/jbc.M804396200 Campesi I, Straface E, Occhioni S, Montella A, Franconi F: Protein oxidation seems to be linked to constitutive autophagy: a sex study. Life Sci 2013, 93: 145–152. 10.1016/j.lfs.2013.06.001 Chen C, Hu LX, Dong T, Wang GQ, Wang LH, Zhou XP, Jiang Y, Murao K, Lu SQ, Chen JW, Zhang GX: Apoptosis and autophagy contribute to gender difference in cardiac ischemia-reperfusion induced injury in rats. Life Sci 2013, 93: 265–270. 10.1016/j.lfs.2013.06.019 Balconi G, Pietra A, Busacca M, de Gaetano G, Dejana E: Success rate of primary human endothelial cell culture from umbilical cords is influenced by maternal and fetal factors and interval from delivery. Vitro 1983, 19: 807–810. 10.1007/BF02618159 de Llano JJM, Fuertes G, Torro I, Garcia Vicent C, Fayos JL, Lurbe E: Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels. J Transl Med 2009, 7: 30. 10.1186/1479-5876-7-30 Bertino E, Gilli G, Occhi L, Giuliani F, Di Nicola P, Spada E, Fabris C: Postnatal growth of preterm infants: which reference charts? Minerva Pediatr 2010, 62(3 Suppl 1):71–74. Crampton SP, Davis J, Hughes CC: Isolation of human umbilical vein endothelial cells (HUVEC). J Vis Exp 2007, 3: 183. Schatz F, Soderland C, Hendricks-Munoz KD, Gerrets RP, Lockwood CJ: Human endometrial endothelial cells: isolation, characterization, and inflammatory-mediated expression of tissue factor and type 1 plasminogen activator inhibitor. Biol Reprod 2000, 62: 691–697. 10.1095/biolreprod62.3.691 Handin RI, Wagner DD: Molecular and cellular biology of von Willebrand factor. Prog Hemost Thromb 1989, 9: 233–259. Cattaneo MG, Cappellini E, Benfante R, Ragni M, Omodeo-Salé F, Nisoli E, Borgese N, Vicentini LM: Chronic deficiency of nitric oxide affects hypoxia inducible factor-1a (HIF-1a) stability and migration in human endothelial cells. PLoS One 2011, 6: e29680. 10.1371/journal.pone.0029680 Sapan CV, Lundblad RL, Price NC: Colorimetric protein assay techniques. Biotechnol Appl Biochem 1999, 29: 99–108. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3: research0034.0031-research0034.0011. 10.1186/gb-2002-3-7-research0034 de Jonge HJM, Fehrmann RSN, de Bont ESJM, Hofstra RMW, Gerbens F, Kamps WA, de Vries EGE, van der Zee AGJ, te Meerman GJ, ter Elst A: Evidence based selection of housekeeping genes. PLoS One 2007, 2: e898. 10.1371/journal.pone.0000898 Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30: e36. 10.1093/nar/30.9.e36 Malorni W, Campesi I, Straface E, Vella S, Franconi F: Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007, 9: 1779–1801. 10.1089/ars.2007.1596 Ma XH, Piao S, Wang D, McAfee QW, Nathanson KL, Lum JJ, Li LZ, Amaravadi RK: Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 2011, 17: 3478–3489. 10.1158/1078-0432.CCR-10-2372 Rabinowitz JD, White E: Autophagy and metabolism. Science 2010, 330: 1344–1348. 10.1126/science.1193497 Prossnitz ER, Barton M: Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 2014, 389: 71–83. 10.1016/j.mce.2014.02.002 Pellegrini M, Bulzomi P, Lecis M, Leone S, Campesi I, Franconi F, Marino M: Endocrine disruptors differently influence estrogen receptor β and androgen receptor in male and female rat VSMC. J Cell Physiol 2014, 229: 1061–1068. 10.1002/jcp.24530 Hervé MAJ, Meduri G, Petit FG, Domet TS, Lazennec G, Mourah S, Perrot-Applanat M: Regulation of the vascular endothelial growth factor (VEGF) receptor Flk-1/KDR by estradiol through VEGF in uterus. J Endocrinol 2006, 188: 91–99. 10.1677/joe.1.06184 Toth B, Saadat G, Geller A, Scholz C, Schulze S, Friese K, Jeschke U: Human umbilical vascular endothelial cells express estrogen receptor beta (ERβ) and progesterone receptor A (PR-A), but not ERα and PR-B. Histochem Cell Biol 2008, 130: 399. 10.1007/s00418-008-0426-7 Evans MJ, Harris HA, Miller CP, Karathanasis SK, Adelman SJ: Estrogen receptors a and b have similar activities in multiple endothelial cell pathways. Endocrinology 2002, 143: 3785–3795. 10.1210/en.2002-220356 Laughlin MH, Welshons WV, Sturek M, Rush JW, Turk JR, Taylor JA, Judy BM, Henderson KK, Ganjam V: Gender, exercise training, and eNOS expression in porcine skeletal muscle arteries. J Appl Physiol 2003, 95: 250–264. Ogueta SB, Schwartz SD, Yamashita CK, Farber DB: Estrogen receptor in the human eye: influence of gender and age on gene expression. Invest Ophthalmol Vis Sci 1999, 40: 1906–1911. Kim-Schulze S, McGowan KA, Hubchak SC, Cid MC, Martin MB, Kleinman HK, Greene GL, Schnaper HW: Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells. Circulation 1996, 94: 1402–1407. 10.1161/01.CIR.94.6.1402 Greaves E, Collins F, Critchley HOD, Saunders PTK: ERb-dependent effects on uterine endothelial cells are cell specific and mediated via Sp1. Hum Reprod 2013, 28: 2490–2501. 10.1093/humrep/det235 Simard M, Drolet R, Blomquist C, Tremblay Y: Human type 2 17beta-hydroxysteroid dehydrogenase in umbilical vein and artery endothelial cells: differential inactivation of sex steroids according to the vessel type. Endocrine 2011, 40: 203–211. 10.1007/s12020-011-9519-5 Annibalini G, Agostini D, Calcabrini C, Martinelli C, Colombo E, Guescini M, Tibollo P, Stocchi V, Sestili P: Effects of sex hormones on inflammatory response in male and female vascular endothelial cells. J Endocrinol Investig 2014, 37: 861–869. 10.1007/s40618-014-0118-1 Death AK, McGrath KCY, Sader MA, Nakhla S, Jessup W, Handelsman DJ, Celermajer DS: Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-kappaB-dependent pathway. Endocrinology 2004, 145: 1889–1897. 10.1210/en.2003-0789 McGrath K, Hill M, Mcrobb L, Heather A: The androgen receptor drives the sex-specific expression of vascular cell adhesion molecule-1 in endothelial cells but not lipid metabolism genes in monocyte-derived macrophages. Horm Mol Biol Clin Invest 2010, 2: 203–209. Bae S, Zhang L: Gender differences in cardioprotection against ischemia/reperfusion injury in adult rat hearts: focus on Akt and protein kinase C signaling. J Pharmacol Exp Ther 2005, 315: 1125–1135. 10.1124/jpet.105.090803 Wang F, He Q, Sun Y, Dai X, Yang XP: Female adult mouse cardiomyocytes are protected against oxidative stress. Hypertension 2010, 55: 1172–1178. 10.1161/HYPERTENSIONAHA.110.150839 Le TYL, Ashton AW, Mardini M, Stanton PG, Funder JW, Handelsman DJ, Mihailidou AS: Role of androgens in sex differences in cardiac damage during myocardial infarction. Endocrinology 2014, 155: 568–575. 10.1210/en.2013-1755 Lee J, Giordano S, Zhang J: Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 2012, 441: 523–540. 10.1042/BJ20111451 Cuestas E, Darauich L, Corredera L, Costa ME: Is there any correlation between mothers birth weight with the first child birth weight? Rev Fac Cien Med Univ Nac 2007, 3: 68–72. Hales CN, Barker DJP: The thrifty phenotype hypothesis: type 2 diabetes. Br Med Bull 2001, 60: 5–20. 10.1093/bmb/60.1.5 Zhang Y, Li H, Liu S, Fu G, Zhao Y, Xie YJ, Zhang Y, Wang Y: The associations of high birth weight with blood pressure and hypertension in later life: a systematic review and meta-analysis. Hypertens Res 2013, 36: 725–735. 10.1038/hr.2013.33 Murrow L, Debnath J: Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 2013, 8: 105–137. 10.1146/annurev-pathol-020712-163918