Sn promoted BaFeO3− catalysts for N2O decomposition: Optimization of Fe active centers

Journal of Catalysis - Tập 347 - Trang 9-20 - 2017
Chuande Huang1,2, Yanyan Zhu3, Xiaodong Wang1, Xin Liu1, Junhu Wang1, Tao Zhang1
1State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
2University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
3College of Chemical Engineering, Northwest University, Xi'an 710069, People's Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alini, 2007, Development of new catalysts for N2O decomposition from adipic acid plant, Appl. Catal. B, 70, 323, 10.1016/j.apcatb.2005.12.031

Jiang, 2009, Direct decomposition of nitrous oxide to nitrogen by in-situ oxygen removal with a perovskite membrane, Angew. Chem. Int. Ed., 48, 2983, 10.1002/anie.200804582

Kapteijn, 1996, Heterogeneous catalytic decomposition of nitrous oxide, Appl. Catal. B, 9, 25, 10.1016/0926-3373(96)90072-7

Zhu, 2011, Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and 57Fe Mössbauer spectroscopy, J. Catal., 283, 149, 10.1016/j.jcat.2011.08.001

Cai, 2012, Design and performance characterization of a sub-Newton N2O monopropellant thruster, Aerosp. Sci. Technol., 23, 439, 10.1016/j.ast.2011.10.003

Ivanov, 2009, Influence of oxygen mobility on catalytic activity of La–Sr–Mn–O composites in the reaction of high temperature N2O decomposition, J. Catal., 267, 5, 10.1016/j.jcat.2009.07.005

Tian, 2009, Effect of large cations (La3+ and Ba2+) on the catalytic performance of Mn-substituted hexaaluminates for N2O decomposition, Appl. Catal. B, 92, 437, 10.1016/j.apcatb.2009.09.002

Kondratenko, 2010, Mechanism and micro-kinetics of direct N2O decomposition over BaFeAl11O19 hexaaluminate and comparison with Fe-MFI zeolites, Appl. Catal. B-Environ., 99, 66, 10.1016/j.apcatb.2010.05.033

El-Malki, 2000, Active sites in Fe/MFI catalysts for NOx reduction and oscillating N2O decomposition, J. Catal., 196, 212, 10.1006/jcat.2000.3034

Perez-Ramirez, 2002, NO-assisted N2O decomposition over Fe-based catalysts: effects of gas-phase composition and catalyst constitution, J. Catal., 208, 211, 10.1006/jcat.2002.3559

Perez-Alonso, 2006, Synergy of FexCe1− xO2 mixed oxides for N2O decomposition, J. Catal., 239, 340, 10.1016/j.jcat.2006.02.008

Xie, 2015, Catalytic decomposition of N2O over Fe-ZSM-11 catalysts prepared by different methods: nature of active Fe species, J. Catal., 330, 311, 10.1016/j.jcat.2015.07.010

Zhu, 2002, N2O decomposition over Fe/ZSM-5: effect of high-temperature calcination and steaming, Catal. Lett., 81, 205, 10.1023/A:1016581107432

Li, 2013, Catalytic properties of extra framework iron-containing species in ZSM-5 for N2O decomposition, J. Catal., 308, 386, 10.1016/j.jcat.2013.08.010

Pirngruber, 2007, The role of autoreduction and of oxygen mobility in N2O decomposition over Fe-ZSM-5, J. Catal., 246, 147, 10.1016/j.jcat.2006.11.030

Sun, 2006, Chemistry of N2O decomposition on active sites with different nature: effect of high-temperature treatment of Fe/ZSM-5, J. Catal., 238, 186, 10.1016/j.jcat.2005.12.013

Sazama, 2014, Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx, J. Catal., 312, 123, 10.1016/j.jcat.2014.01.019

Sun, 2004, Enhancement of α-oxygen formation and N2O decomposition on Fe/ZSM-5 catalysts by extraframework Al, Chem. Commun., 2480–2481

Pinaeva, 2016, MeOx/Al2O3 and MeOx/CeO2 (Me=Fe Co, Ni) catalysts for high temperature N2O decomposition and NH3 oxidation, Catal. Sci. Technol., 6, 2150, 10.1039/C5CY01381J

Zhu, 2014, Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis, ACS Catal., 4, 2917, 10.1021/cs500606g

Russo, 2007, N2O decomposition over perovskite catalysts, Ind. Eng. Chem. Res., 46, 4226, 10.1021/ie0612008

Lombardo, 1998, Perovskite oxides in catalysis: past, present and future, Res. Chem. Intermed., 24, 581, 10.1163/156856798X00104

Royer, 2014, Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality, Chem. Rev., 114, 10292, 10.1021/cr500032a

Royer, 2005, Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1–xFexO3, J. Catal., 234, 364, 10.1016/j.jcat.2004.11.041

Iwakuni, 2007, Direct decomposition of NO into N2 and O2 on BaMnO3-based perovskite oxides, Appl. Catal. B, 74, 299, 10.1016/j.apcatb.2007.02.020

Bocquet, 1992, Electronic-structure of SrFe4+O3 and related Fe perovskite oxides, Phys. Rev. B: Condens. Matter, 45, 1561, 10.1103/PhysRevB.45.1561

Clemens, 2014, Crystallographic and magnetic structure of the perovskite-type compound BaFeO2.5: unrivaled complexity in oxygen vacancy ordering, Inorg. Chem., 53, 5911, 10.1021/ic402988y

Shin, 1979, Absorption of NO in the lattice of an oxygen-deficient perovskite SrFeO3− x and the infrared spectroscopic study of the system NO-SrFeO3− x, Mater. Res. Bull., 14, 633, 10.1016/0025-5408(79)90046-1

Ciambelli, 2002, CO oxidation and methane combustion on LaAl1−xFexO3 perovskite solid solutions, Appl. Catal. B, 37, 231, 10.1016/S0926-3373(02)00004-8

Pinaeva, 2013, La-Fe-O/CeO2 based composites as the catalysts for high temperature N2O decomposition and CH4 combustion, Catal. Lett., 143, 1294, 10.1007/s10562-013-1079-2

Wu, 2013, Surface reconstructions of LaCo1−xFexO3 at high temperature during N2O decomposition in realistic exhaust gas composition: impact on the catalytic properties, Appl. Catal. B, 140–141, 151, 10.1016/j.apcatb.2013.04.002

Wu, 2013, Spectroscopic investigation of iron substitution in EuCoO3: related impact on the catalytic properties in the high-temperature N2O decomposition, J. Phys. Chem. C, 117, 13989, 10.1021/jp402211c

Kartha, 2011, Modified surface and bulk properties of Fe-substituted lanthanum titanates enhances catalytic activity for CO+N2O reaction, J. Mol. Catal. A: Chem., 335, 158, 10.1016/j.molcata.2010.11.028

Yao, 2013, Investigation of the physicochemical properties and catalytic activities of Ce0.67 M0.33O2 (M=Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO, Catal. Sci. Technol., 3, 688, 10.1039/C2CY20610B

Baidya, 2009, High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1−xSnxO2 and Ce0.78Sn0.2Pd0.02O2−δ, J. Phys. Chem. C, 113, 4059, 10.1021/jp8060569

Yuan, 2010, Negative temperature coefficient thermistor based on BaFexSn1−xO3−δ solid solutions, J. Mater. Sci., 45, 2681, 10.1007/s10853-010-4249-2

Roh, 1996, Nonmetallic spin glass behavior by spin frustration at low temperature in nonstoichiometric BaSn1−xFexO3−y system, Solid State Commun., 100, 565, 10.1016/0038-1098(96)00476-0

Collins, 1979, Application of the Mössbauer effect to the characterization of an amorphous tin-oxide system, Phys. Rev. B: Condens. Matter, 19, 1369, 10.1103/PhysRevB.19.1369

Gallagher, 1965, Mössbauer effect in the system BaFeO2.5–3.0, J. Chem. Phys., 43, 516, 10.1063/1.1696774

Stanulis, 2012, Sol-gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates, J. Sol-Gel Sci. Technol., 64, 643, 10.1007/s10971-012-2896-2

Hook, 1964, Oxygen stoichiometry in the compound BaFeO3−x, J. Phys. Chem., 68, 3786, 10.1021/j100794a041

Lu, 2005, Hydrothermal synthesis of nanocrystalline BaSnO3 using a SnO2·xH2O sol, J. Eur. Ceram. Soc., 25, 919, 10.1016/j.jeurceramsoc.2004.04.010

Bates, 2014, Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13, J. Catal., 312, 87, 10.1016/j.jcat.2014.01.004

Bollmann, 2008, Effect of Zn addition on the water–gas shift reaction over supported palladium catalysts, J. Catal., 257, 43, 10.1016/j.jcat.2008.04.005

Ribeiro, 1997, Reproducibility of turnover rates in heterogeneous metal catalysis: compilation of data and guidelines for data analysis, Catal. Rev. Sci. Eng., 39, 49, 10.1080/01614949708006468

Liu, 2010, Selective catalytic reduction of NO with NH3 over iron titanate catalyst: catalytic performance and characterization, Appl. Catal. B, 96, 408, 10.1016/j.apcatb.2010.02.038

Chang, 1995, N2O decomposition over [Fe]-ZSM-5 and Fe-HZSM-5 zeolites, Catal. Lett., 34, 163, 10.1007/BF00808332

Liu, 2012, Effect of zirconium in La(Ba)ZrxCo1−xO3−δ perovskite catalysts for N2O decomposition, Chin. J. Catal., 33, 907, 10.1016/S1872-2067(11)60402-6

Hayashi, 2011, BaFeO3: a ferromagnetic iron oxide, Angew. Chem. Int. Ed., 123, 12755, 10.1002/ange.201105276

Chen, 2011, Tantalum stabilized SrCoO3−δ perovskite membrane for oxygen separation, J. Membr. Sci., 368, 159, 10.1016/j.memsci.2010.11.040

Kondratenko, 2006, Mechanism and kinetics of direct N2O decomposition over Fe−MFI zeolites with different iron speciation from temporal analysis of products, J. Phys. Chem. B, 110, 22586, 10.1021/jp063492w

McIntosh, 2006, Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ, Solid State Ionics, 177, 1737, 10.1016/j.ssi.2006.03.041

Zhang, 2016, Synthesis and gas sensing properties of porous hierarchical SnO2 by grapefruit exocarp biotemplate, Sens. Actuat. B, 222, 1134, 10.1016/j.snb.2015.08.016

Ghaffari, 2012, Preparation, surface state and band structure studies of SrTi1−xFexO3−δ (x=0–1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy, Surf. Sci., 606, 670, 10.1016/j.susc.2011.12.013

Florea, 2014, Evidence of A-B site cooperation in the EuFeO3 perovskite from 151Eu and 57Fe Mössbauer spectroscopy, EXAFS, and toluene catalytic oxidation, J. Catal., 316, 130, 10.1016/j.jcat.2014.04.016

Tan, 1990, X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina, Chem. Mater., 2, 186, 10.1021/cm00008a021

Zhao, 2013, Preparation of three-dimensionally ordered macroporous La0.6Sr0.4Fe0.8Bi0.2O3−δ and their excellent catalytic performance for the combustion of toluene, J. Mol. Catal. A: Chem., 366, 116, 10.1016/j.molcata.2012.09.014

Lee, 2008, Characteristics of mixed conducting perovskites Ba1−xNdxFe3+1−tFe4+tO3−y, J. Ind. Eng. Chem., 14, 701, 10.1016/j.jiec.2008.02.011

Mizoguchi, 2013, Electrical and optical properties of Sb-doped BaSnO3, Chem. Mater., 25, 3858, 10.1021/cm4019309

Huang, 2015, A facile peroxo-precursor synthesis method and structure evolution of large specific surface area mesoporous BaSnO3, Inorg. Chem., 54, 4002, 10.1021/acs.inorgchem.5b00269

Pavlyukhin, 2011, Mössbauer spectroscopic study of high-temperature proton-conducting Ba2SnY1−xFexO6−δ oxides, Russ. J. Electrochem., 47, 657, 10.1134/S1023193511060103

Huang, 2016, Extensive analysis of the formation mechanism of BaSnO3 by solid-state reaction between BaCO3 and SnO2, J. Eur. Ceram. Soc., 36, 583, 10.1016/j.jeurceramsoc.2015.11.001

Tejuca, 1989, Structure and reactivity of perovskite-typre oxides, Adv. Catal., 36, 237, 10.1016/S0360-0564(08)60019-X

Vaishampayan, 2008, Fe-doped SnO2 nanomaterial: a low temperature hydrogen sulfide gas sensor, Mater. Chem. Phys., 109, 230, 10.1016/j.matchemphys.2007.11.024

Dinamarca, 2016, Electronic properties and catalytic performance for DME combustion of lanthanum manganites with partial B-site substitution, J. Catal., 338, 47, 10.1016/j.jcat.2016.02.011

N.N. Greenwood, T.C. Goibb, Chapman and Hall, London, 1971.

Long, 1986

Martynczuk, 2009, Aluminum-doped perovskites as high-performance oxygen permeation materials, Chem. Mater., 21, 1586, 10.1021/cm803217t

Beurmann, 2003, Phase transitions in the SrSnO3–SrFeO3 solid solutions: X-ray diffraction and Mössbauer studies, J. Solid State Chem., 174, 392, 10.1016/S0022-4596(03)00258-5

Waerenborgh, 2005, Phase formation and iron oxidation states in SrFe(Al)O3−δ perovskites, Mater. Lett., 59, 1644, 10.1016/j.matlet.2005.01.033

Shao, 2000, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane, J. Membr. Sci., 172, 177, 10.1016/S0376-7388(00)00337-9

Zhang, 2014, Tin-doped perovskite mixed conducting membrane for efficient air separation, J. Mater. Chem. A, 2, 9666, 10.1039/C4TA00926F

Paulus, 2008, Lattice dynamics to trigger low temperature oxygen mobility in solid oxide ion conductors, J. Am. Chem. Soc., 130, 16080, 10.1021/ja806144a

Alifanti, 2004, Methane and propane combustion over lanthanum transition-metal perovskites: role of oxygen mobility, Appl. Catal. A, 262, 167, 10.1016/j.apcata.2003.11.024

Pena, 2001, Chemical structures and performance of perovskite oxides, Chem. Rev., 101, 1981, 10.1021/cr980129f

Plane, 1999, A study of the reactions of Fe and FeO with NO2, and the structure and bond energy of FeO2, Phys. Chem. Chem. Phys., 1, 1843, 10.1039/a809896d

Tsvetkov, 2016, Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface, Nat Mater., 15, 1010, 10.1038/nmat4659

Dey, 2009, S K-edge XAS and DFT calculations on cytochrome P450: covalent and ionic contributions to the cysteine-Fe bond and their contribution to reactivity, J. Am. Chem. Soc., 131, 7869, 10.1021/ja901868q

Pietrogiacomi, 2016, N2O decomposition on CoOx, CuOx, FeOx or MnOx supported on ZrO2: the effect of zirconia doping with sulfates or K+ on catalytic activity, Appl. Catal. B, 187, 218, 10.1016/j.apcatb.2016.01.018

Ivanov, 2009, Influence of oxygen mobility on catalytic activity of La–Sr–Mn–O composites in the reaction of high temperature N2O decomposition, J. Catal., 267, 5, 10.1016/j.jcat.2009.07.005

Winter, 1969, The decomposition of nitrous oxide on the rare-earth sesquioxides and related oxides, J. Catal., 15, 144, 10.1016/0021-9517(69)90018-9