Interval Estimations of Solution Sets to Real-Valued Systems of Linear or Non-Linear Equations

Miguel Á. Sainz1, Ernest Gardeñes2, Lambert Jorba3
1Departamento de Informática y Matemática Aplicada, University of Girond, Spain
2Departamento de Matemática Aplicada y Análisis, University of Barcelona, Spain
3Departamento de Matemática Económica, Financiera y Actuarial, University of Barcelona, Spain

Tóm tắt

This is a second paper devoted to present the Modal Interval Analysis as a framework where the search of formal solutions for a set of simultaneous interval linear or non-linear equations is started on, together with the interval estimations for sets of solutions of real-valued systems in which coefficients and right-hand sides belong to certain intervals. The main purpose of this second paper is to show that the modal intervals are a suitable tool to approach problems where logical references appear, for example, to find interval estimates of a special class of generalized sets of solutions of real-valued linear and non-linear systems, the UE-solution sets.

Từ khóa


Tài liệu tham khảo

Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

Gardeñes, E.,Mielgo, H., and Sainz, M. Á.: Presentation of the Research Group SIGLA/X,Report IMA 95–10, Dept. de Informática y Matemática Aplicada, Universidad de Gerona, 1995.

Gardeñes, E., Trepat, A., and Mielgo, H.: Present Perspective of the SIGLA Interval System, Freiburger Intervall-Berichte 82/9, Freiburg, 1982.

Gregory, R. T. and Karney, D. L.: A Collection of Matrices for Testing Computational Algorithms, Wiley Interscience, John Wiley and Sons, New York, 1969.

Kaucher, E.: Interval Analysis in the Extended Interval Space IR, Computing Suplementum 2, Springer, Heidelberg, 1979, pp. 33–49.

Kupriyanova, L.: Finding Inner Estimates of the Solution Sets to Equations with Interval Coefficients, Ph.D. dissertation, Saratov State University, Saratov, 2000 (in Russian).

Kupriyanova, L.: Inner Estimation of the United Solution Set of Interval Algebraic System, Reliable Computing 1 (1) (1995), pp. 15–41.

Markov, S., Popova, E., and Ullrich, Ch.: On the Solution of Linear Algebraic Equations Involving Interval Coefficients, in: Iterative Methods in Linear Algebra, IMACS Series on Computational and Applied Mathematics 3 (1996), pp. 216–225.

Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

Rump, S. M.: Verification Methods for Dense and Sparce Systems of Equations, in: Herzberger, J. (ed.), Topics in Validated Numerics, Elsevier, Amsterdam, 1994, pp. 63–135.

Sainz, M. Á., Gardeñes, E., and Jorba, L.: Formal Solution to Systems of Interval Linear or Non-Linear Equations, Reliable Computing 8 (3) (2002), pp. 189–211.

Shary, S. P.: Algebraic Approach in the “Outer Problem” for Interval Linear Equations, Reliable Computing 3 (2) (1997), pp. 103–135.

Shary, S. P.:Algebraic Approach to the Interval Linear Static Identification, Tolerance and Control Problems, or One More Application of Kaucher Arithmetic, Reliable Computing 2 (1) (1996), pp. 3–33.

Shary, S. P.: Algebraic Solutions to Interval Linear Equations and Their Applications, in: Alefeld, G. and Herzberger, J. (eds.), Numerical Methods and Error Bounds, Akademie Verlag, Berlin, 1996, pp. 224–233.

Shary, S. P.: Interval Gauss-Seidel Method for Generalized Solution Sets to Interval Linear Systems, in: Applications of Interval Analysis to Systems and Control (Proceedings of the Workshop MISC'99), University of Girona, 1999, pp. 67–81.

Shary, S. P.: Outer Estimation of Generalized Solution Sets to Interval Linear Systems, Reliable Computing 5 (3) (1999), pp. 323–335.

Shary, S. P.: Solving the Linear Interval Tolerance Problem, Mathematics and Computers in Simulation 39 (1995), pp. 53–85.

SIGLA/Xgroup: Modal Intervals. Basic Tutorial, in: Applications of Interval Analysis to Systems and Control (Proceedings of the Workshop MISC'99), University of Girona, 1999, pp. 157–227.

Trepat, A.: Completacion reticular del espacio de intervalos, Tesina de Licenciatura, Facultad de Matemáticas, Universidad de Barcelona, 1982.