Nanotechnology as a therapeutic tool to combat microbial resistance
Tài liệu tham khảo
Hajipour, 2012, Antibacterial properties of nanoparticles, Trends, 30, 499
Jayaraman, 2009, Antibiotic resistance: an overview of mechanisms and a paradigm shift, Curr. Sci., 96, 1475
Deurenberg, 2009, The molecular evolution of hospital- and community-associated methicillin-resistant Staphylococcus aureus, Curr. Mol. Med., 9, 100, 10.2174/156652409787581637
Périchon, 2009, VanA-type vancomycin-resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 53, 4580, 10.1128/AAC.00346-09
Blecher, 2011, The growing role of nanotechnology in combating infectious disease, Virulence, 2, 395, 10.4161/viru.2.5.17035
Huh, 2011, “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control. Release, 156, 128, 10.1016/j.jconrel.2011.07.002
Schairer, 2012, The potential of nitric oxide releasing therapies as antimicrobial agents, Virulence, 3, 0, 10.4161/viru.20328
Hindi, 2009, The antimicrobial efficacy of sustained release silver–carbene complex-loaded l-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies, Biomaterials, 30, 3771, 10.1016/j.biomaterials.2009.03.044
Knetsch, 2011, New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles, Polymers, 3, 340, 10.3390/polym3010340
Zhang, 2010, Development of nanoparticles for antimicrobial drug delivery, Curr. Med. Chem., 17, 585, 10.2174/092986710790416290
Friedman, 2013, Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens, J. Investig. Dermatol., 133, 1231, 10.1038/jid.2012.399
Huang, 2011, Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids, Biomaterials, 32, 214, 10.1016/j.biomaterials.2010.08.076
Leid, 2012, In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria, J. Antimicrob. Chemother., 67, 138, 10.1093/jac/dkr408
Alanis, 2005, Resistance to antibiotics: are we in the post-antibiotic era?, Arch. Med. Res., 36, 697, 10.1016/j.arcmed.2005.06.009
Riley, 2012, Resistance is futile: the bacteriocin model for addressing the antibiotic resistance challenge, Biochem. Soc. Trans., 40, 1438, 10.1042/BST20120179
Levy, 2004, Antibacterial resistance worldwide: causes, challenges and responses, Nat. Med., 10, S122, 10.1038/nm1145
Davies, 2010, Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev., 74, 417, 10.1128/MMBR.00016-10
Ganjian, 2012, Effects of salt stress on the antimicrobial drug resistance and protein profile of Staphylococcus aureus, Jundishapur J. Microbiol., 5, 328
Lara, 2010, Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria, World J. Microbiol. Biotechnol., 26, 615, 10.1007/s11274-009-0211-3
Gao, 2011, Recent advances in materials for extended-release antibiotic delivery system, J. Antibiot., 64, 625, 10.1038/ja.2011.58
Quintiliani, 2004, Using pharmacodynamic and pharmacokinetic concepts to optimize treatment of infectious diseases, Infect. Med., 21, 219
Poole, 2002, Mechanisms of bacterial biocide and antibiotic resistance, J. Appl. Microbiol., 92, 55S, 10.1046/j.1365-2672.92.5s1.8.x
Deck, 2012, Sulfonamides, trimethoprim, & quinolones, 831
Chambers, 1999, Penicillin-binding protein-mediated resistance in pneumococci and staphylococci, J. Infect. Dis., 179, S353, 10.1086/513854
Triglia, 1997, Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum, Proc. Natl. Acad. Sci., 94, 13944, 10.1073/pnas.94.25.13944
Higgins, 2003, Fluoroquinolones: structure and target sites, Curr. Drug Targets, 4, 181, 10.2174/1389450033346920
Rodríguez-Martínez, 2009, Mutational analysis of quinolone resistance in the plasmid-encoded pentapeptide repeat proteins QnrA, QnrB and QnrS, J. Antimicrob. Chemother., 63, 1128, 10.1093/jac/dkp111
Hansen, 1999, The macrolide–ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA, Mol. Microbiol., 31, 623, 10.1046/j.1365-2958.1999.01202.x
Gu, 2013, The emerging problem of linezolid-resistant Staphylococcus, J. Antimicrob. Chemother., 68, 4, 10.1093/jac/dks354
Bush, 2010, Updated functional classification of beta-lactamases, Antimicrob. Agents Chemother., 54, 969, 10.1128/AAC.01009-09
Khan, 2012, Medicine at nanoscale: a new horizon, Int. J. Nanomedicine, 7, 2997, 10.2147/IJN.S33238
Khan, 2012, Nanodrugs: optimism for emerging trend of multidrug resistance, Int. J. Nanomedicine, 7, 4323, 10.2147/IJN.S35288
Kumarasamy, 2010, Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study, Lancet Infect. Dis., 10, 597, 10.1016/S1473-3099(10)70143-2
Robicsek, 2005, Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase, Nat. Med., 12, 83, 10.1038/nm1347
Park, 2006, Prevalence in the United States of aac (6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme, Antimicrob. Agents Chemother., 50, 3953, 10.1128/AAC.00915-06
Iliades, 2004, Dihydropteroate synthase mutations in Pneumocystis jiroveci can affect sulfamethoxazole resistance in a Saccharomyces cerevisiae model, Antimicrob. Agents Chemother., 48, 2617, 10.1128/AAC.48.7.2617-2623.2004
Goldstein, 2008, Role of folate antagonists in the treatment of methicillin-resistant Staphylococcus aureus infection, Clin. Infect. Dis., 46, 584, 10.1086/525536
Ferreira, 2010, Advances in industrial biofilm control with micro-nanotechnology, 2, 845
Huang, 2011, Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections, Antimicrob. Agents Chemother., 55, 3432, 10.1128/AAC.01803-10
Groathouse, 2006, Isothermal amplification and molecular typing of the obligate intracellular pathogen Mycobacterium leprae isolated from tissues of unknown origins, J. Clin. Microbiol., 44, 1502, 10.1128/JCM.44.4.1502-1508.2006
Hackstadt, 1998, The diverse habitats of obligate intracellular parasites, Curr. Opin. Microbiol., 1, 82, 10.1016/S1369-5274(98)80146-X
Cotté, 2008, Transmission of Bartonella henselae by Ixodes ricinus, Emerg. Infect. Dis., 14, 1074, 10.3201/eid1407.071110
Walker, 1996, Rickettsiae
R.S. Porter, J.L. Kaplan (Eds.), The Merck Manual Online for healthcare professionals, infectious diseases, bacteria and anti-bacterial drugs (content last modified 2012). Retrieved from http://www.merckmanuals.com/professional/infectious_diseases/bacteria_and_antibacterial_drugs/overview_of_bacteria.html.
Privett, 2012, Examination of bacterial resistance to exogenous nitric oxide, Nitric Oxide, 26, 169, 10.1016/j.niox.2012.02.002
Friedman, 2011, Susceptibility of Gram-positive and-negative bacteria to novel nitric oxide-releasing nanoparticle technology, Virulence, 2, 217, 10.4161/viru.2.3.16161
Friedman, 2008, Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites, Nitric Oxide, 19, 12, 10.1016/j.niox.2008.04.003
Martinez, 2012, Nitric oxide releasing nanoparticles: challenges and future prospects of therapeutic delivery, Ther. Deliv., 3, 1139, 10.4155/tde.12.97
Martinez, 2009, Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection, J. Investig. Dermatol., 129, 2463, 10.1038/jid.2009.95
Friedman, 2011, Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione, Nitric Oxide, 25, 381, 10.1016/j.niox.2011.09.001
Han, 2009, Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection, PLoS One, 4, e7804, 10.1371/journal.pone.0007804
Schairer, 2012, Nitric oxide nanoparticles: pre-clinical utility as a therapeutic for intramuscular abscesses, Virulence, 3, 62, 10.4161/viru.3.1.18816
Mihu, 2010, The use of nitric oxide releasing nanoparticles as a treatment against Acinetobacter baumannii in wound infections, Virulence, 1, 62, 10.4161/viru.1.2.10038
Han, 2011, Nitric oxide releasing nanoparticle synthesis and characterization, 187
Luo, 2013, Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria, Nanoscale, 5, 687, 10.1039/C2NR33154C
Qiu, 2012, Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera, Proc. Natl. Acad. Sci., 109, 4944, 10.1073/pnas.1107254109
Brown, 2012, Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus, Appl. Environ. Microbiol., 78, 2768, 10.1128/AEM.06513-11
Lellouche, 2012, Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles, Int. J. Nanomedicine, 7, 1175
Hetrick, 2009, Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles, Biomaterials, 30, 2782, 10.1016/j.biomaterials.2009.01.052
Roe, 2008, Antimicrobial surface functionalization of plastic catheters by silver nanoparticles, J. Antimicrob. Chemother., 61, 869, 10.1093/jac/dkn034
Hernandez-Delgadillo, 2012, Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm, Int. J. Nanomedicine, 7, 2109
Anghel, 2012, Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development, Nanoscale Res. Lett., 10.1186/1556-276X-7-501
Chifiriuc, 2012, Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity, Nanoscale Res. Lett., 10.1186/1556-276X-7-209
Kim, 2004, The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes, J. Liposome Res., 14, 123, 10.1081/LPR-200029887
Simões, 2010, A review of current and emergent biofilm control strategies, LWT Food Sci. Technol., 43, 573, 10.1016/j.lwt.2009.12.008
Bryers, 2004, Bioinspired implant materials befuddle bacteria, ASM News Am. Soc. Microbiol., 70, 232