Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier

Biomedical Signal Processing and Control - Tập 41 - Trang 242-254 - 2018
Kandala N.V.P.S. Rajesh1, Ravindra Dhuli1
1School of Electronics Engineering, VIT University, Vellore 632014, India

Tài liệu tham khảo

Mendis, 2011 Mehra, 2007, Global public health problem of sudden cardiac death, J. Electrocardiol., 40, S118, 10.1016/j.jelectrocard.2007.06.023 Sörnmo, 2005, vol. 8 Das, 2014 Engin, 2004, ECG beat classification using neuro-fuzzy network, Pattern Recognit. Lett., 25, 1715, 10.1016/j.patrec.2004.06.014 Afkhami, 2016, Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals, Pattern Recognit. Lett., 70, 45, 10.1016/j.patrec.2015.11.018 Hu, 1997, A patient-adaptable ECG beat classifier using a mixture of experts approach, IEEE Trans. Biomed. Eng., 44, 891, 10.1109/10.623058 de Lannoy, 2010, Feature relevance assessment in automatic inter-patient heart beat classification, Biosignals, 13 Mar, 2011, Optimization of ECG classification by means of feature selection, IEEE Trans. Biomed. Eng., 58, 2168, 10.1109/TBME.2011.2113395 de Chazal, 2006, A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features, IEEE Trans. Biomed. Eng., 53, 2535, 10.1109/TBME.2006.883802 Doquire, 2011, Feature selection for interpatient supervised heart beat classification, Comput. Intell. Neurosci., 2011, 1, 10.1155/2011/643816 De Chazal, 2004, Automatic classification of heartbeats using ECG morphology and heartbeat interval features, IEEE Trans. Biomed. Eng., 51, 1196, 10.1109/TBME.2004.827359 Korürek, 2010, ECG beat classification using particle swarm optimization and radial basis function neural network, Expert Syst. Appl., 37, 7563, 10.1016/j.eswa.2010.04.087 Mead, 1982, Expanded frequency-domain ECG waveform processing: integration into a new version of ARGUS/2H, Proceedings of Computers in Cardiology, 205 Minami, 1999, Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network, IEEE Trans. Biomed. Eng., 46, 179, 10.1109/10.740880 Afonso, 1999, ECG beat detection using filter banks, IEEE Trans. Biomed. Eng., 46, 192, 10.1109/10.740882 Afonso, 1995, Detecting ventricular fibrillation, IEEE Eng. Med. Biol. Mag., 14, 152, 10.1109/51.376752 Ye, 2012, Heartbeat classification using morphological and dynamic features of ECG signals, IEEE Trans. Biomed. Eng., 59, 2930, 10.1109/TBME.2012.2213253 Elhaj, 2016, Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals, Comput. Methods Progr. Biomed., 127, 52, 10.1016/j.cmpb.2015.12.024 Martis, 2012, Application of principal component analysis to ECG signals for automated diagnosis of cardiac health, Expert Syst. Appl., 39, 11792, 10.1016/j.eswa.2012.04.072 Thomas, 2014, Classification of cardiac arrhythmias based on dual tree complex wavelet transform, 729 Kutlu, 2012, Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients, Comput. Methods Progr. Biomed., 105, 257, 10.1016/j.cmpb.2011.10.002 Kutlu, 2011, A multi-stage automatic arrhythmia recognition and classification system, Comput. Biol. Med., 41, 37, 10.1016/j.compbiomed.2010.11.003 Omar, 2011, Application of the empirical mode decomposition to ECG and HRV signals for congestive heart failure classification, 392 Desai, 2016, Decision support system for arrhythmia beats using ECG signals with DCT, DWT and EMD methods: a comparative study, J. Mech. Med. Biol., 16, 1640012, 10.1142/S0219519416400121 Anas, 2011, Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation, Comput. Biol. Med., 41, 110, 10.1016/j.compbiomed.2010.12.005 Arafat, 2009, Detection of ventricular fibrillation using empirical mode decomposition and Bayes decision theory, Comput. Biol. Med., 39, 1051, 10.1016/j.compbiomed.2009.08.007 Saini, 2014, Electrocardiogram beat classification using empirical mode decomposition and multiclass directed acyclic graph support vector machine, Comput. Electr. Eng., 40, 1774, 10.1016/j.compeleceng.2014.04.004 Acharya, 2014, Linear and nonlinear analysis of normal and CAD-affected heart rate signals, Comput. Methods Progr. Biomed., 113, 55, 10.1016/j.cmpb.2013.08.017 Shahnaz, 2015, Cardiac beat classification based on wavelet analysis of empirical mode decomposed ECG signals, 1 Xia, 2014, Classification of ventricular tachycardia and fibrillation based on the Lempel–Ziv complexity and EMD, 322 Rajesh, 2017, Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine, Comput. Biol. Med., 10.1016/j.compbiomed.2017.06.006 Hassan, 2016, Automatic sleep scoring using statistical features in the EMD domain and ensemble methods, Biocybern. Biomed. Eng., 36, 248, 10.1016/j.bbe.2015.11.001 Abeysekera, 1989, Time-frequency domain features of ECG signals: their application in P wave detection using the cross Wigner–Ville distribution, 1524 Almenar, 1999, A new adaptive scheme for ECG enhancement, Signal Process., 75, 253, 10.1016/S0165-1684(98)00237-0 Akay, 1997, Wavelet applications in medicine, IEEE Spectr., 34, 50, 10.1109/6.590747 Huang, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 454, 903, 10.1098/rspa.1998.0193 Krawczyk, 2016, Learning from imbalanced data: open challenges and future directions, Prog. Artif. Intell., 5, 221, 10.1007/s13748-016-0094-0 Colominas, 2014, Improved complete ensemble EMD: a suitable tool for biomedical signal processing, Biomed. Signal Process. Control, 14, 19, 10.1016/j.bspc.2014.06.009 Freund, 2001, An adaptive version of the boost by majority algorithm, Mach. Learn., 43, 293, 10.1023/A:1010852229904 Moody, 2001, The impact of the MIT-BIH arrhythmia database, IEEE Eng. Med. Biol. Mag., 20, 45, 10.1109/51.932724 Amann, 2005, Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators, Biomed. Eng. Online, 4, 60, 10.1186/1475-925X-4-60 Hinich, 1982, Testing for Gaussianity and linearity of a stationary time series, J. Time Ser. Anal., 3, 169, 10.1111/j.1467-9892.1982.tb00339.x Swami, 1998 Kwiatkowski, 1992, Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?, J. Econom., 54, 159, 10.1016/0304-4076(92)90104-Y Gilles, 2013, Empirical wavelet transform, IEEE Trans. Signal Process., 61, 3999, 10.1109/TSP.2013.2265222 Biju, 2017, Ictal EEG classification based on amplitude and frequency contours of IMFs, Biocybern. Biomed. Eng., 37, 172, 10.1016/j.bbe.2016.12.005 Djemili, 2016, Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals, Biocybern. Biomed. Eng., 36, 285, 10.1016/j.bbe.2015.10.006 Wu, 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal., 1, 1, 10.1142/S1793536909000047 Torres, 2011, A complete ensemble empirical mode decomposition with adaptive noise, 4144 Zgallai, 2013 Richman, 2000, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol., 278, H2039, 10.1152/ajpheart.2000.278.6.H2039 Lake, 2002, Sample entropy analysis of neonatal heart rate variability, Am. J. Physiol. Regul. Integr. Comp. Physiol., 283, R789, 10.1152/ajpregu.00069.2002 Japkowicz, 2000, The class imbalance problem: significance and strategies, Proc. of the Int’l Conf. on Artificial Intelligence Radivojac, 2004, Classification and knowledge discovery in protein databases, J. Biomed. Inf., 37, 224, 10.1016/j.jbi.2004.07.008 Zheng, 2004, Feature selection for text categorization on imbalanced data, ACM SIGKDD Explor. Newsl., 6, 80, 10.1145/1007730.1007741 Chen, 2016, An empirical study of a hybrid imbalanced-class DT-RST classification procedure to elucidate therapeutic effects in uremia patients, Med. Biol. Eng. Comput., 54, 983, 10.1007/s11517-016-1482-0 Prati, 2008, A study with class imbalance and random sampling for a decision tree learning system, 131 Chawla, 2002, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, 321, 10.1613/jair.953 Bermejo, 2011, Improving the performance of Naive Bayes multinomial in e-mail foldering by introducing distribution-based balance of datasets, Expert Syst. Appl., 38, 2072, 10.1016/j.eswa.2010.07.146 Galar, 2012, A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches, IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.), 42, 463, 10.1109/TSMCC.2011.2161285 Oza, 2008, Classifier ensembles: select real-world applications, Inf. Fusion, 9, 4, 10.1016/j.inffus.2007.07.002 Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655 Schapire, 1990, The strength of weak learnability, Mach. Learn., 5, 197, 10.1007/BF00116037 McGill, 1978, Variations of box plots, Am. Stat., 32, 12 Vapnik, 1998, vol. 1 Cover, 1967, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory, 13, 21, 10.1109/TIT.1967.1053964 Mika, 1999, Fisher discriminant analysis with kernels, 41 Powers, 2011 Peng, 2005, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell., 27, 1226, 10.1109/TPAMI.2005.159 Pohjalainen, 2015, Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits, Comput. Speech Lang., 29, 145, 10.1016/j.csl.2013.11.004 Witten, 2016