Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection

Nature - Tập 543 Số 7643 - Trang 113-117 - 2017
Justin Eyquem1, Jorge Mansilla-Soto1, Theodoros Giavridis1, Sjoukje J. C. van der Stegen1, Mohamad Hamieh1, Kristen Cunanan2, Ashlesha Odak1, Mithat Gönen2, Michel Sadelain1
1Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, New York, 10065, New York, USA
2Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, 10065, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jensen, M. C. & Riddell, S. R. Designing chimeric antigen receptors to effectively and safely target tumors. Curr. Opin. Immunol . 33, 9–15 (2015)

Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med . 9, 279–286 (2003)

Sadelain, M. CAR therapy: the CD19 paradigm. J. Clin. Invest . 125, 3392–3400 (2015)

Sadelain, M. & Mulligan, R. C. Efficient retroviral-mediated gene transfer into murine primary lymphocytes. Ninth International Immunology Congress, Budapest. 88:34. (1992)

Wang, X. & Rivière, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics . 3, 16015 (2016)

Ellis, J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene Ther . 16, 1241–1246 (2005)

Rivière, I., Dunbar, C. E. & Sadelain, M. Hematopoietic stem cell engineering at a crossroads. Blood 119, 1107–1116 (2012)

von Kalle, C., Deichmann, A. & Schmidt, M. Vector integration and tumorigenesis. Hum. Gene Ther . 25, 475–481 (2014)

Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016)

Tsai, S. Q. & Joung, J. K. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet . 17, 300–312 (2016)

Lombardo, A. et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat. Methods 8, 861–869 (2011)

Sather, B. D. et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 7, 307ra156 (2015)

Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra38 (2013)

Wang, J. et al. Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res . 44, e30 (2016)

Hubbard, N. et al. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood 127, 2513–2522 (2016)

Corthay, A., Nandakumar, K. S. & Holmdahl, R. Evaluation of the percentage of peripheral T cells with two different T cell receptor alpha-chains and of their potential role in autoimmunity. J. Autoimmun . 16, 423–429 (2001)

de Vree, P. J. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol . 32, 1019–1025 (2014)

Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015)

Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol . 10, 29–37 (2009)

Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med . 17, 1290–1297 (2011)

Gallardo, H. F., Tan, C. & Sadelain, M. The internal ribosomal entry site of the encephalomyocarditis virus enables reliable coexpression of two transgenes in human primary T lymphocytes. Gene Ther . 4, 1115–1119 (1997)

Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med . 21, 581–590 (2015)

Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016)

Frigault, M. J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res . 3, 356–367 (2015)

Schrum, A. G., Turka, L. A. & Palmer, E. Surface T-cell antigen receptor expression and availability for long-term antigenic signaling. Immunol. Rev . 196, 7–24 (2003)

Liu, H., Rhodes, M., Wiest, D. L. & Vignali, D. A. On the dynamics of TCR:CD3 complex cell surface expression and downmodulation. Immunity 13, 665–675 (2000)

Call, M. E. & Wucherpfennig, K. W. The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu. Rev. Immunol . 23, 101–125 (2005)

Allison, K. A. et al. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. eLife 5, e10134 (2016)

Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol . 35, 51–60 (2014)

Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol . 15, 486–499 (2015)

Rivière, I., Brose, K. & Mulligan, R. C. Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl Acad. Sci. USA 92, 6733–6737 (1995)

Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat. Biotechnol . 20, 70–75 (2002)

Gong, M. C. et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1, 123–127 (1999)

Gade, T. P. et al. Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Cancer Res . 65, 9080–9088 (2005)