Understanding the importance of spatial correlation in identifying spatio-temporal variation of disease risk, in the case of malaria risk mapping in southern Ethiopia
Tài liệu tham khảo
Anderson, 2014, Identifying clusters in Bayesian disease mapping, Biostatistics, 15, 457, 10.1093/biostatistics/kxu005
Diggle, 2016, Model-based geostatistics for prevalence mapping in low-resource settings, Am. Stat. Assoc., 111, 1096, 10.1080/01621459.2015.1123158
WHO, 2019
Wakefield, 2007, Disease mapping and spatial regression with count data, Biostatistics, 8, 158, 10.1093/biostatistics/kxl008
Bhatt, 2015, The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015, Nature, 526, 207, 10.1038/nature15535
Weiss, 2019, Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000-17. A spatial and temporal modelling study, Lancet, 394, 322, 10.1016/S0140-6736(19)31097-9
WHO, 2020
Yeshiwondim, 2009, Spatial analysis of malaria incidence at the village level in areas with unstable transmission in Ethiopia, Int. J. Health Geogr., 8
Taffese, 2018, Malaria epidemiology and interventions in Ethiopia from 2001 to 2016, Infect. Dis. Poverty, 7
Girum, 2021, Burden of malaria in Ethiopia, 2000–2016: Findings from the global health estimates 2016, Trop. Dis. Travel Med. Vaccines, 5
Rodo, 2021, Malaria trends in Ethiopian highlands track the 2000 ’slowdown’ in global warming., Nature Commun., 12
Bivand, 2015
Illian, 2012, A toolbox for fitting complex spatial point process models using Integrated Nested Laplace Approximation (INLA), Ann. Appl. Stat., 6, 1499, 10.1214/11-AOAS530
Diggle, 2019
Christensen, 2004, Monte Carlo maximum likelihood in model-based geostatistics, Comput. Graph. Stat., 13, 702, 10.1198/106186004X2525
Joe, 2008, Accuracy of Laplace approximation for discrete response mixed models, Comput. Statist. Data Anal., 52, 5066, 10.1016/j.csda.2008.05.002
Besag, 1974, Spatial interaction and the statistical analysis of lattice systems, J. R. Stat. Soc. Ser. B Stat. Methodol., 36, 192
Diggle, 2013, Spatial and spatio-temporal log-Gaussian Cox processes: Extending the geostatistical paradigm, Statist. Sci., 28, 542, 10.1214/13-STS441
Kitawa, 2023, Space-time modelling of monthly malaria incidence for seasonal associated drivers and early epidemic detection in southern Ethiopia, Malar J., 22
Midekisa, 2012, Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia, Malar. J., 11
Colborn, 2018, Spatio-temporal modelling of weekly malaria incidence in children under 5 for early epidemic detection in mozambique, Sci. Rep., 8, 1, 10.1038/s41598-018-27537-4
Rushworth, 2017, An adaptive spatio-temporal smoothing model for estimating trends and step changes in disease risk, R. Stat. Soc. C, 66, 141, 10.1111/rssc.12155
Besag, 1991, Bayesian image restoration, with two applications in spatial statistics, Ann. Inst. Stat. Math., 43, 1, 10.1007/BF00116466
Lee, 2018, Spatio-temporal areal unit modelling in R with conditional autoregressive priors using the CARBayesST package, J. Stat. Softw., 84, 1, 10.18637/jss.v084.i09
Martínez-Beneito, 2008, An autoregressive approach to spatio-temporal disease mapping, Stat. Med., 27, 2874, 10.1002/sim.3103
Li, 2012, Spatial modelling of lupus incidence over 40 years with changes in census areas, J. R. Stat. Soc. Ser. C. Appl. Stat., 61, 99, 10.1111/j.1467-9876.2011.01004.x
Benjamin, 2018, Continuous inference for aggregated point process data, R. Stat. Soc., 181, 1125, 10.1111/rssa.12347
Johnson, 2019, A spatially discrete approximation to log-Gaussian Cox processes for modelling aggregated disease count data, Stat. Med., 38, 4871, 10.1002/sim.8339
Taylor, 2015, Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R, J. Stat. Softw., 63, 1, 10.18637/jss.v063.i07
Utazi, 2021, District-levelestimation of vaccination coverage: Discrete vs continuous spatial models, Stat. Med., 40, 2197, 10.1002/sim.8897
Paige, 2022, Design- and model-based approaches to small-area estimation in a low- and middle-income country context: Comparisons and recommendations, Surv. Stat. Methodol., 10, 50, 10.1093/jssam/smaa011
Wong, 2023
CSA, Central Statistical Authority, 2007 Population and Housing Census of Ethiopia. Country Level, Addis Ababa, Ethiopia, 2007.
Gneiting, 2010, Continuous parameter spatio-temporal processes, 427
Giorgi, 2018, Geostatistical methods for disease mapping and visualization using data from spatio-temporally referenced prevalence surveys, Internat. Statist. Rev., 86, 571, 10.1111/insr.12268
Leroux, 2000, 179
Lee, 2011, A comparison of conditional autoregressive models used in Bayesian disease mapping, Spatial Spatio-Temp. Epidemiol., 2, 79, 10.1016/j.sste.2011.03.001
Rushworth, 2014, A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in greater London, Spatial Spatio-Temporal Epidemiol., 10, 29, 10.1016/j.sste.2014.05.001
Giorgi, 2017, PrevMap: An R package for prevalence mapping, J. Stat. Softw., 78, 1, 10.18637/jss.v078.i08
Johnson, 2018
EFDR, 2019
Waller, 2010, Disease mapping, 217, 10.1201/9781420072884-c14
Hoeting, 2006, Model selection for geostatistical models, Ecol. Appl., 16, 87, 10.1890/04-0576
Gelfand, 2010
Abeku, 2004, Effects of meteorological factors on epidemic malaria in Ethiopia: A statistical modelling approach based on theoretical reasoning, Parasitology, 128, 585, 10.1017/S0031182004005013
Teklehaimanot, 2004, Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms, Malar. J., 3
Giorgi, 2021, Model building and assessment of the impact of covariates for disease prevalence mapping in low-resource settings: To explain and to predict, J. R. Soc. Interface, 18, 10.1098/rsif.2021.0104
Bhatt, 2017, Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization, J. R. Soc. Interface, 14
McMahon, 2021, Remote sensing of environmental risk factors for malaria in different geographic contexts, Int. J. Health Geogr., 20, 1, 10.1186/s12942-021-00282-0
Yu, 2015, Projecting future transmission of malaria under climate change scenarios: Challenges and research needs, Crit. Rev. Environ. Sci. Technol., 45, 777, 10.1080/10643389.2013.852392