Toric varieties, lattice points and Dedekind sums

Mathematische Annalen - Tập 295 - Trang 1-24 - 1993
James E. Pommersheim1
1Department of Mathematics, University of Chicago, chicago, (USA)

Tài liệu tham khảo

[Dan] Danilov, V.I.: The geometry of toric varieties. Russ. Math. Surv.33:2, 97–154 (1978) [Ehr] Ehrhart, E.: Sur un problème de géométrie diophantine linéaire. J. Reine Angew. Math.227, 1–29 (1967) [Ful] Fulton, W.: Intersection theory. Berlin Heidelberg New York: Springer 1984 [Ham] Hammer, J.: Unsolved problems concerning lattice points. London San Francisco Melbourne: Pitman 1977 [Hir] Hirzebruch, F.: Topological methods in algebraic geometry. Berlin Heidelberg New York: Springer 1966 [HiZa] Hirzebruch, F., Zagier, D.: The Atiyah-Singer index theorem and elementary number theory. Berkeley: Publish or Perish 1974 [Mo] Mordell, L.J.: Lattice points in a tetrahedron and generalized Dedekind sums. J. Indian Math.15, 41–46 (1951) [Mor] Morelli, R.: Pick's theorem and the Todd class of a toric variety (to appear) [My] Myerson, G.: On semi-regular continued fractions. Arch. Math.48, 420–425 (1987) [Oda] Oda, T.: Convex bodies and algebraic geometry. Berlin Heidelberg New York: Springer 1987 [Ra] Rademacher, H.: Generalization of the reciprocity formula for Dedekind sums. Duke Math. J.21, 391–397 (1954) [RaGr] Rademacher, H., Grosswald, E.: Dedekind sums. (Carus Math. Monogr. no. 16) Washington: Mathematical Association of America 1972 [Ree] Reeve, J.E.: On the volume of lattice polyhedra. Proc. Lond. Math. Soc., III. Ser.7, 378–395 (1957)