Utilization of accelerator and reactor based nuclear analytical techniques for chemical characterization of automobile windshield glass samples and potential of statistical analyses using trace elements towards glass forensics

Forensic Science International - Tập 334 - Trang 111262 - 2022
V. Sharma1,2, Arnab Sarkar3,4, R. Acharya1,4, Hemlata K. Bagla2, P.K. Pujari1,4
1Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
2Department of Nuclear and Radiochemistry, K.C. College, HSNC University, Churchgate, Mumbai 400020, India
3Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
4Homi Bhabha National Institute, DAE, Anushaktinagar, Mumbai 400094, India

Tài liệu tham khảo

Sharma, 2019, Chemical characterization of soda-lime glass samples by in situ current normalised PIGE and conventional INAA methods for forensic applications, J. Radioanal. Nucl. Chem., 323, 1451, 10.1007/s10967-019-06926-7 Acharya, 2019, Potential of conventional and internal monostandard NAA and PGNAA and PIGE in forensic sciences: an overview, Forensic Chem., 12, 107, 10.1016/j.forc.2018.01.002 Sharma, 2021, Standardization of an external (in air) PIGE methodology using tantalum as a current normalizer in conjunction with INAA for rapid and non-destructive chemical characterization of “as received” glass fragments towards forensic applications., J. Anal. . Spectrom., 36, 630, 10.1039/D0JA00482K Mauro, 2014, Glass science in the united states: current status and future directions, Int. J. Appl. Glass Sci., 5, 2, 10.1111/ijag.12058 Mauro, 2014, Two centuries of glass research: historical trends, current status, and grand challenges for the future, Int. J. Appl. Glass Sci., 5, 313, 10.1111/ijag.12087 Shortland, 2007, Trace element discriminants between Egyptian and mesopotamian late bronze age glasses, J. Archaeol. Sci., 34, 781, 10.1016/j.jas.2006.08.004 Robertshaw, 2009, chemical analysis of glass beads from medieval al-basra (morocco), Archaeometry, 52, 355, 10.1111/j.1475-4754.2009.00482.x Hughes, 1976, The quantitative analysis of glass by atomic absorption spectroscopy, Forensic Sci., 8, 217, 10.1016/0300-9432(76)90135-7 Duckworth, 2002, Forensic glass analysis by ICP-MS: a multi-element assessment of discriminating power via analysis of variance and pairwise comparisons, J. Anal. At. Spectrom., 17, 662, 10.1039/b201575g Koons, 1991, Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments, J. Anal. At. Spectrom., 6, 451, 10.1039/ja9910600451 Zurhaar, 1990, Characterisation of forensic glass samples using inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 5, 611, 10.1039/ja9900500611 Parouchais, 1996, The analysis of small glass fragments using inductively coupled plasma mass spectrometry, J. Forensic Sci., 41, 351, 10.1520/JFS13921J Henderson, 1988, Electron probe microanalysis of mixed-alkali glasses, Archaeometry, 30, 77, 10.1111/j.1475-4754.1988.tb00436.x Kuisma-Kursula, 2000, Accuracy, precision and detection limits of SEM–WDS, SEM–EDS and PIXE in the multi-elemental analysis of medieval glass, X-Ray Spectrom., 29, 111, 10.1002/(SICI)1097-4539(200001/02)29:1<111::AID-XRS408>3.0.CO;2-W Brozel-Mucha, 2009, X-ray microanalysis of glass for forensic purposes – research on the persistence of glass fragments on clothing, X-ray Spectrom., 38, 58, 10.1002/xrs.1116 Šmit, 2013, Analysis of glass from the post-Roman settlement Tonovcov grad (Slovenia) by PIXE–PIGE and LA-ICP-MS, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At., 311, 53, 10.1016/j.nimb.2013.06.012 Trejos, 2003, Analysis and comparison of glass fragments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and ICP-MS, Anal. Bioanal. Chem., 376, 1255, 10.1007/s00216-003-1968-0 Trejos, 2004, Effect of fractionation on the forensic elemental analysis of glass using laser ablation inductively coupled plasma mass spectrometry, Anal. Chem., 76, 1236, 10.1021/ac0349330 Smith, 2006, A guide for the quantitative elemental analysis of glass using laser ablation inductively coupled plasma mass spectrometry, At. Spectrosc., 27, 69 Berends-Montero, 2006, Forensic analysis of float glass using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): validation of a method, J. Anal. At. Spectrom., 21, 1185, 10.1039/b606109e Bridge, 2007, Forensic comparative glass analysis by laser-induced breakdown spectroscopy, Spectrochim. Acta Part B: At. Spectrosc., 62, 1419, 10.1016/j.sab.2007.10.015 Bridge, 2006, Characterization of automobile float glass with laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry, Appl. Spectrosc., 60, 1181, 10.1366/000370206778664572 Suliyanti, 2011, Direct powder analysis by laser-induced breakdown spectroscopy utilizing laser-controlled dust production in a small chamber, J. Korean Phys. Soc., 58, 1129, 10.3938/jkps.58.1129 Miliszkiewicz, 2015, Current approaches to calibration of LA-ICP-MS analysis, J. Anal. At. Spectrom., 30, 327, 10.1039/C4JA00325J Almirall, 2021, Determination of seventeen major and trace elements in new float glass standards for use in forensic comparisons using laser ablation inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B At. Spectrosc., 179, 10.1016/j.sab.2021.106119 Haschke, 2014 Nakanishi, 2008, Lower limits of detection of synchrotron radiation high-energy X-ray fluorescence spectrometry and its possibility for the forensic application for discrimination of glass fragments, Forensic Sci. Int., 175, 227, 10.1016/j.forsciint.2007.07.001 Carmona, 2010, Advantages and disadvantages of PIXE/PIGE, XRF and EDXspectrometries applied to archaeometric characterisation of glasses, Mater. Charact., 61, 257, 10.1016/j.matchar.2009.12.006 Šmit, 2013, Analysis of Roman glass from Albania by PIXE–PIGE method, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At., 296, 7, 10.1016/j.nimb.2012.12.007 Chhillar, 2017, Simultaneous determination of low Z elements in barium borosilicate glass samples by in situ current normalized particle induced gamma-ray emission methods, J. Radioanal. Nucl. Chem., 312, 567, 10.1007/s10967-017-5251-9 Prakash, 2021, Simultaneous quantification of low Z elements in phosphorus containing alkali borosilicate glass samples by in situ Current normalized external (in air) PIGE method utilizing proton beam from FOTIA, J. Radio. NuclChem, 328, 519, 10.1007/s10967-021-07679-y Dasari, 2013, Application of INAA to ancient bricks for grouping study using trace elements, J. Radioanal. Nucl. Chem., 298, 699, 10.1007/s10967-013-2493-z Dasari, 2011, A standardless approach of INAA for grouping study of ancient potteries, J. Radioanal. Nucl. Chem., 294, 429, 10.1007/s10967-011-1464-5 Dasari, 2018, Chemical characterization of large size archaeological clay bricks for grouping study by internal mono-standard neutron activation analysis, J. Radioanal. Nucl. Chem., 316, 1205, 10.1007/s10967-018-5863-8 Caldwell, 1968, The Use of Neutron Activation Analysis in Forensic Science, Aust. J. Forensic Sci., 1, 11, 10.1080/00450616809410284 Schmitt, 1970, Identification of origin of glass by neutron activation analysis in a forensic case-, J. Forensic Sci., 15, 252 Coleman, 1973, comparison of glass fragments by neutron activation analysis, J. Radioanal. Chem., 15, 367, 10.1007/BF02516583 Goulding, 1973, Forensic activation analysis-The Australian scene, J. Radioanal. Chem., 15, 151, 10.1007/BF02516566 Frana, 1987, Neutron activation analysis of some ancient glasses from bohemia, Archaeometry, 29, 69, 10.1111/j.1475-4754.1987.tb00399.x Pitts, 1991, Statistical discrimination of flat glass fragments by instrumental neutron activation analysis methods for forensic science applications, J. Forensic Sci., 36, 122, 10.1520/JFS13013J Samanta, 2020, Development of an external (in air) in situ current normalized particle induced gamma-ray emission method utilizing 3.5 MeV proton beam from FOTIA for rapid quantification of low Z elements in glass and ceramic samples, J. Radio. NuclChem, 325, 923, 10.1007/s10967-020-07266-7 Raja, 2020, Application of PGNAA utilizing thermal neutron beam for quantification of boron concentrations in ceramic and refractory neutron absorbers, J. Radio. NuclChem, 325, 933, 10.1007/s10967-020-07136-2 Datta, 2020, Quantification of minor and trace elements in raw and branded turmeric samples using Instrumental Neutron Activation Analysis utilizing Apsara-U reactor for possible applications to forensic science, J. Radio. NuclChem, 325, 967, 10.1007/s10967-020-07287-2 Bugoi, 2013, Investigations of Byzantine glass bracelets from Nufăru, Romania using external PIXE-PIGE methods, J. Archaeol. Sci., 40, 2881, 10.1016/j.jas.2013.03.003 Zadora, 2007, Glass analysis for forensic purposes — a comparison of classification methods, J. Chemom., 21, 174, 10.1002/cem.1030 Zadora, 2009, Classification of glass fragments based on elemental composition and refractive index, J. Forensic Sci., 54, 49, 10.1111/j.1556-4029.2008.00905.x Ramos, 2011, Energy Dispersive X-ray spectrometer for the classification of glass traces, Anal. Chim. Acta, 705, 207, 10.1016/j.aca.2011.05.029 Borusiewicz, 2021, Differentiation of oleoresin capsicum sprays based on their capsaicinoid profiles, Forensic Sci. Int., 328, 10.1016/j.forsciint.2021.111031 Alladio, 2017, Direct and indirect alcohol biomarkers data collected in hair samples - multivariate data analysis and likelihood ratio interpretation perspectives, Data Brief., 12, 1, 10.1016/j.dib.2017.03.026 Ramos, 2010, Evaluation of glass samples for forensic purposes—an application of likelihood ratios and an information–theoretical approach, Chemom. Intell. Lab. Syst., 102, 63, 10.1016/j.chemolab.2010.03.007 Zadora, 2009, Evaluation of evidence value of glass fragments by likelihood ratio and Bayesian Network approaches, Anal. Chim. Acta, 642, 279, 10.1016/j.aca.2008.10.005 Brooks, 2020, Optimization and evaluation of spectral comparisons of electrical tape backings by X-ray fluorescence, Forensic Chem., 21, 10.1016/j.forc.2020.100291 Pořízka, 2018, On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review, Spectrochim. Acta Part B At. Spectrosc., 148, 65, 10.1016/j.sab.2018.05.030 Virklerand, 2009, Blood species identification for forensic purposes using raman spectroscopy combined with advanced statistical analysis, Anal. Chem., 81, 7773, 10.1021/ac901350a Sharma, 2019, On the spectroscopic investigation of lipstick stains: forensic trace evidence, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 215, 48, 10.1016/j.saa.2019.02.093 ASTM E2927–16, Standard test method for determination of trace elements in soda-lime glass samples using Laser Ablation Inductively coupled plasma mass spectrometry for forensic comparisons, DOI: 10.1520/E2927–16E01. ASTM E2926–13, Standard test method for forensic comparison of glass using micro X ray fluorescence spectrometry DOI: 10.1520/E2926–17. Ziegler, 2010, SRIM - The stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At., 268, 1818, 10.1016/j.nimb.2010.02.091 Savidou, 1999, Proton induced thick target γ-ray yields of light nuclei at the energy region Ep=1.0–4.1 MeV, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 152, 12, 10.1016/S0168-583X(98)00962-8 P.K. Mukhopadhyay, The operating software of the PHAST PC-MCA card. In: Proceedings of the Symposium on Intelligent Nuclear Instrumentation-2001 (INIT-2001), Mumbai, India, 6–9 Feb 2011. pp. 307–310. De Corte, 2003, Recommended nuclear data for use in the k0 standardization of neutron activation analysis, At. Data Nucl. Data Tables, 85, 47, 10.1016/S0092-640X(03)00036-6