Utilization of accelerator and reactor based nuclear analytical techniques for chemical characterization of automobile windshield glass samples and potential of statistical analyses using trace elements towards glass forensics
Tài liệu tham khảo
Sharma, 2019, Chemical characterization of soda-lime glass samples by in situ current normalised PIGE and conventional INAA methods for forensic applications, J. Radioanal. Nucl. Chem., 323, 1451, 10.1007/s10967-019-06926-7
Acharya, 2019, Potential of conventional and internal monostandard NAA and PGNAA and PIGE in forensic sciences: an overview, Forensic Chem., 12, 107, 10.1016/j.forc.2018.01.002
Sharma, 2021, Standardization of an external (in air) PIGE methodology using tantalum as a current normalizer in conjunction with INAA for rapid and non-destructive chemical characterization of “as received” glass fragments towards forensic applications., J. Anal. . Spectrom., 36, 630, 10.1039/D0JA00482K
Mauro, 2014, Glass science in the united states: current status and future directions, Int. J. Appl. Glass Sci., 5, 2, 10.1111/ijag.12058
Mauro, 2014, Two centuries of glass research: historical trends, current status, and grand challenges for the future, Int. J. Appl. Glass Sci., 5, 313, 10.1111/ijag.12087
Shortland, 2007, Trace element discriminants between Egyptian and mesopotamian late bronze age glasses, J. Archaeol. Sci., 34, 781, 10.1016/j.jas.2006.08.004
Robertshaw, 2009, chemical analysis of glass beads from medieval al-basra (morocco), Archaeometry, 52, 355, 10.1111/j.1475-4754.2009.00482.x
Hughes, 1976, The quantitative analysis of glass by atomic absorption spectroscopy, Forensic Sci., 8, 217, 10.1016/0300-9432(76)90135-7
Duckworth, 2002, Forensic glass analysis by ICP-MS: a multi-element assessment of discriminating power via analysis of variance and pairwise comparisons, J. Anal. At. Spectrom., 17, 662, 10.1039/b201575g
Koons, 1991, Comparison of refractive index, energy dispersive X-ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization of sheet glass fragments, J. Anal. At. Spectrom., 6, 451, 10.1039/ja9910600451
Zurhaar, 1990, Characterisation of forensic glass samples using inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 5, 611, 10.1039/ja9900500611
Parouchais, 1996, The analysis of small glass fragments using inductively coupled plasma mass spectrometry, J. Forensic Sci., 41, 351, 10.1520/JFS13921J
Henderson, 1988, Electron probe microanalysis of mixed-alkali glasses, Archaeometry, 30, 77, 10.1111/j.1475-4754.1988.tb00436.x
Kuisma-Kursula, 2000, Accuracy, precision and detection limits of SEM–WDS, SEM–EDS and PIXE in the multi-elemental analysis of medieval glass, X-Ray Spectrom., 29, 111, 10.1002/(SICI)1097-4539(200001/02)29:1<111::AID-XRS408>3.0.CO;2-W
Brozel-Mucha, 2009, X-ray microanalysis of glass for forensic purposes – research on the persistence of glass fragments on clothing, X-ray Spectrom., 38, 58, 10.1002/xrs.1116
Šmit, 2013, Analysis of glass from the post-Roman settlement Tonovcov grad (Slovenia) by PIXE–PIGE and LA-ICP-MS, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At., 311, 53, 10.1016/j.nimb.2013.06.012
Trejos, 2003, Analysis and comparison of glass fragments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and ICP-MS, Anal. Bioanal. Chem., 376, 1255, 10.1007/s00216-003-1968-0
Trejos, 2004, Effect of fractionation on the forensic elemental analysis of glass using laser ablation inductively coupled plasma mass spectrometry, Anal. Chem., 76, 1236, 10.1021/ac0349330
Smith, 2006, A guide for the quantitative elemental analysis of glass using laser ablation inductively coupled plasma mass spectrometry, At. Spectrosc., 27, 69
Berends-Montero, 2006, Forensic analysis of float glass using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): validation of a method, J. Anal. At. Spectrom., 21, 1185, 10.1039/b606109e
Bridge, 2007, Forensic comparative glass analysis by laser-induced breakdown spectroscopy, Spectrochim. Acta Part B: At. Spectrosc., 62, 1419, 10.1016/j.sab.2007.10.015
Bridge, 2006, Characterization of automobile float glass with laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry, Appl. Spectrosc., 60, 1181, 10.1366/000370206778664572
Suliyanti, 2011, Direct powder analysis by laser-induced breakdown spectroscopy utilizing laser-controlled dust production in a small chamber, J. Korean Phys. Soc., 58, 1129, 10.3938/jkps.58.1129
Miliszkiewicz, 2015, Current approaches to calibration of LA-ICP-MS analysis, J. Anal. At. Spectrom., 30, 327, 10.1039/C4JA00325J
Almirall, 2021, Determination of seventeen major and trace elements in new float glass standards for use in forensic comparisons using laser ablation inductively coupled plasma mass spectrometry, Spectrochim. Acta Part B At. Spectrosc., 179, 10.1016/j.sab.2021.106119
Haschke, 2014
Nakanishi, 2008, Lower limits of detection of synchrotron radiation high-energy X-ray fluorescence spectrometry and its possibility for the forensic application for discrimination of glass fragments, Forensic Sci. Int., 175, 227, 10.1016/j.forsciint.2007.07.001
Carmona, 2010, Advantages and disadvantages of PIXE/PIGE, XRF and EDXspectrometries applied to archaeometric characterisation of glasses, Mater. Charact., 61, 257, 10.1016/j.matchar.2009.12.006
Šmit, 2013, Analysis of Roman glass from Albania by PIXE–PIGE method, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At., 296, 7, 10.1016/j.nimb.2012.12.007
Chhillar, 2017, Simultaneous determination of low Z elements in barium borosilicate glass samples by in situ current normalized particle induced gamma-ray emission methods, J. Radioanal. Nucl. Chem., 312, 567, 10.1007/s10967-017-5251-9
Prakash, 2021, Simultaneous quantification of low Z elements in phosphorus containing alkali borosilicate glass samples by in situ Current normalized external (in air) PIGE method utilizing proton beam from FOTIA, J. Radio. NuclChem, 328, 519, 10.1007/s10967-021-07679-y
Dasari, 2013, Application of INAA to ancient bricks for grouping study using trace elements, J. Radioanal. Nucl. Chem., 298, 699, 10.1007/s10967-013-2493-z
Dasari, 2011, A standardless approach of INAA for grouping study of ancient potteries, J. Radioanal. Nucl. Chem., 294, 429, 10.1007/s10967-011-1464-5
Dasari, 2018, Chemical characterization of large size archaeological clay bricks for grouping study by internal mono-standard neutron activation analysis, J. Radioanal. Nucl. Chem., 316, 1205, 10.1007/s10967-018-5863-8
Caldwell, 1968, The Use of Neutron Activation Analysis in Forensic Science, Aust. J. Forensic Sci., 1, 11, 10.1080/00450616809410284
Schmitt, 1970, Identification of origin of glass by neutron activation analysis in a forensic case-, J. Forensic Sci., 15, 252
Coleman, 1973, comparison of glass fragments by neutron activation analysis, J. Radioanal. Chem., 15, 367, 10.1007/BF02516583
Goulding, 1973, Forensic activation analysis-The Australian scene, J. Radioanal. Chem., 15, 151, 10.1007/BF02516566
Frana, 1987, Neutron activation analysis of some ancient glasses from bohemia, Archaeometry, 29, 69, 10.1111/j.1475-4754.1987.tb00399.x
Pitts, 1991, Statistical discrimination of flat glass fragments by instrumental neutron activation analysis methods for forensic science applications, J. Forensic Sci., 36, 122, 10.1520/JFS13013J
Samanta, 2020, Development of an external (in air) in situ current normalized particle induced gamma-ray emission method utilizing 3.5 MeV proton beam from FOTIA for rapid quantification of low Z elements in glass and ceramic samples, J. Radio. NuclChem, 325, 923, 10.1007/s10967-020-07266-7
Raja, 2020, Application of PGNAA utilizing thermal neutron beam for quantification of boron concentrations in ceramic and refractory neutron absorbers, J. Radio. NuclChem, 325, 933, 10.1007/s10967-020-07136-2
Datta, 2020, Quantification of minor and trace elements in raw and branded turmeric samples using Instrumental Neutron Activation Analysis utilizing Apsara-U reactor for possible applications to forensic science, J. Radio. NuclChem, 325, 967, 10.1007/s10967-020-07287-2
Bugoi, 2013, Investigations of Byzantine glass bracelets from Nufăru, Romania using external PIXE-PIGE methods, J. Archaeol. Sci., 40, 2881, 10.1016/j.jas.2013.03.003
Zadora, 2007, Glass analysis for forensic purposes — a comparison of classification methods, J. Chemom., 21, 174, 10.1002/cem.1030
Zadora, 2009, Classification of glass fragments based on elemental composition and refractive index, J. Forensic Sci., 54, 49, 10.1111/j.1556-4029.2008.00905.x
Ramos, 2011, Energy Dispersive X-ray spectrometer for the classification of glass traces, Anal. Chim. Acta, 705, 207, 10.1016/j.aca.2011.05.029
Borusiewicz, 2021, Differentiation of oleoresin capsicum sprays based on their capsaicinoid profiles, Forensic Sci. Int., 328, 10.1016/j.forsciint.2021.111031
Alladio, 2017, Direct and indirect alcohol biomarkers data collected in hair samples - multivariate data analysis and likelihood ratio interpretation perspectives, Data Brief., 12, 1, 10.1016/j.dib.2017.03.026
Ramos, 2010, Evaluation of glass samples for forensic purposes—an application of likelihood ratios and an information–theoretical approach, Chemom. Intell. Lab. Syst., 102, 63, 10.1016/j.chemolab.2010.03.007
Zadora, 2009, Evaluation of evidence value of glass fragments by likelihood ratio and Bayesian Network approaches, Anal. Chim. Acta, 642, 279, 10.1016/j.aca.2008.10.005
Brooks, 2020, Optimization and evaluation of spectral comparisons of electrical tape backings by X-ray fluorescence, Forensic Chem., 21, 10.1016/j.forc.2020.100291
Pořízka, 2018, On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review, Spectrochim. Acta Part B At. Spectrosc., 148, 65, 10.1016/j.sab.2018.05.030
Virklerand, 2009, Blood species identification for forensic purposes using raman spectroscopy combined with advanced statistical analysis, Anal. Chem., 81, 7773, 10.1021/ac901350a
Sharma, 2019, On the spectroscopic investigation of lipstick stains: forensic trace evidence, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 215, 48, 10.1016/j.saa.2019.02.093
ASTM E2927–16, Standard test method for determination of trace elements in soda-lime glass samples using Laser Ablation Inductively coupled plasma mass spectrometry for forensic comparisons, DOI: 10.1520/E2927–16E01.
ASTM E2926–13, Standard test method for forensic comparison of glass using micro X ray fluorescence spectrometry DOI: 10.1520/E2926–17.
Ziegler, 2010, SRIM - The stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At., 268, 1818, 10.1016/j.nimb.2010.02.091
Savidou, 1999, Proton induced thick target γ-ray yields of light nuclei at the energy region Ep=1.0–4.1 MeV, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 152, 12, 10.1016/S0168-583X(98)00962-8
P.K. Mukhopadhyay, The operating software of the PHAST PC-MCA card. In: Proceedings of the Symposium on Intelligent Nuclear Instrumentation-2001 (INIT-2001), Mumbai, India, 6–9 Feb 2011. pp. 307–310.
De Corte, 2003, Recommended nuclear data for use in the k0 standardization of neutron activation analysis, At. Data Nucl. Data Tables, 85, 47, 10.1016/S0092-640X(03)00036-6