Sodium Selenite Protects Against Silver Nanoparticle-Induced Testicular Toxicity and Inflammation
Tóm tắt
Metal nanomaterials hold great potential and play an important role in consumer products. However, the increasing use of nanomaterials has raised concern over inadvertent exposure and potential risks for human health and the environment. Henceforth, in vivo testing of nanoparticles and protection against its toxicity is required. Using rat as an animal model, effect of sodium selenite (Se), an essential trace element, on rat testes exposed to silver nanoparticles (AgNPs) was evaluated. Male rats were treated with AgNPs (5 mg/kg/b.w) i/p or Se (0.2 mg/kg/b.w) by gavage. AgNP administration decreased Glutathione (GSH) levels and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and increased levels of malondialdehyde (MDA) and expression of interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). However, treatment with Se increased GSH levels and activities of SOD, CAT, and GPx compared with AgNP-treated group and decreased the level of MDA and inflammatory biomarkers significantly (p < 0.05) as compared with AgNP-treated group. Light microscopic analyses also revealed that AgNP induced histopathological changes in testes tissue. Further, protection by Se on biochemical results was confirmed by alleviation of the histopathological changes in the tissue. Results show the adverse effects of AgNPs on the male reproductive tract, particularly spermatogenesis, and suggest that Se possesses significant potential in reducing AgNP-induced testicular toxicity.
Tài liệu tham khảo
Song MF, Li YS, Kasai H, Kawai K (2012) Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr 50(3):211–216. doi:10.3164/jcbn.11-70
Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5(1):93–98
Varaprasad K, Vimala K, Ravindra S, Narayana Reddy N, Venkata Subba Reddy G, Mohana Raju K (2011) Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J Mater Sci Mater Med 22(8):1863–1872. doi:10.1007/s10856-011-4369-5
Lamb JG, Hathaway LB, Munger MA, Raucy JL, Franklin MR (2010) Nanosilver particle effects on drug metabolism in vitro. Drug Metab Dispos 38(12):2246–2251. doi:10.1124/dmd.110.035238
Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179(2):93–100. doi:10.1016/j.toxlet.2008.04.009
Arora S, Jain J, Rajwade JM, Paknikar KM (2009) Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236(3):310–318. doi:10.1016/j.taap.2009.02.020
Sung JH, Ji JH, Song KS, Lee JH, Choi KH, Lee SH, Yu IJ (2011) Acute inhalation toxicity of silver nanoparticles. Toxicol Ind Health 27(2):149–154. doi:10.1177/0748233710382540
Wu Y, Zhou Q (2012) Dose- and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): underlying mechanisms for silver nanoparticle developmental toxicity. Aquat Toxicol 124–125:238–246. doi:10.1016/j.aquatox.2012.08.009
Zhang XF, Gurunathan S, Kim JH (2015) Effects of silver nanoparticles on neonatal testis development in mice. Int J Nanomedicine 10:6243–6256. doi:10.2147/IJN.S90733
Zhang XF, Choi YJ, Han JW, Kim E, Park JH, Gurunathan S, Kim JH (2015) Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int J Nanomedicine 10:1335–1357. doi:10.2147/IJN.S76062
Zhang XF, Park JH, Choi YJ, Kang MH, Gurunathan S, Kim JH (2015) Silver nanoparticles cause complications in pregnant mice. Int J Nanomedicine 10:7057–7071. doi:10.2147/IJN.S95694
Banan A, Kalbassi Masjed Shahi MR, Bahmani M, Yazdani Sadati MA (2016) Toxicity assessment of silver nanoparticles in Persian sturgeon (Acipenser persicus) and starry sturgeon (Acipenser stellatus) during early life stages. Environ Sci Pollut Res Int. doi:10.1007/s11356-016-6239-7
Boudreau MD, Imam MS, Paredes AM, Bryant MS, Cunningham CK, Felton RP, Jones MY, Davis KJ, Olson GR (2016) Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily oral gavage administration for 13 weeks. Toxicol Sci 150(1):131–160. doi:10.1093/toxsci/kfv318
Han JW, Jeong JK, Gurunathan S, Choi YJ, Das J, Kwon DN, Cho SG, Park C, Seo HG, Park JK, Kim JH (2016) Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse. Nanotoxicology 10(3):361–373. doi:10.3109/17435390.2015.1073396
Braakhuis HM, Cassee FR, Fokkens PH, de la Fonteyne LJ, Oomen AG, Krystek P, de Jong WH, van Loveren H, Park MV (2016) Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology 10(1):63–73. doi:10.3109/17435390.2015.1012184
Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363. doi:10.3109/17435390.2010.509519
Tantra R, Knight A (2011) Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques. Nanotoxicology 5(3):381–392. doi:10.3109/17435390.2010.512987
Tantra R, Tompkins J, Quincey P (2010) Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension. Colloids Surf B: Biointerfaces 75(1):275–281. doi:10.1016/j.colsurfb.2009.08.049
Bartlomiejczyk T, Lankoff A, Kruszewski M, Szumiel I (2013) Silver nanoparticles–—allies or adversaries? Ann Agric Environ Med 20(1):48–54
Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock RC, Schlager JJ, Hussain SM, Ali SF (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187(1):15–21. doi:10.1016/j.toxlet.2009.01.020
Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241. doi:10.1016/S0140-6736(00)02490-9
Ansar S (2016) Effect of selenium on the levels of cytokines and trace elements in toxin-mediated oxidative stress in male rats. Biol Trace Elem Res 169(1):129–133. doi:10.1007/s12011-015-0403-7
Kothari S, Choughule N (2014) Ameliorative stroke of selenium against toxicological effects of mercuric chloride in liver of freshwater catfish Heteropneustes fossilis (Bloch). Environ Toxicol. doi:10.1002/tox.21967
Joshi D, Mittal DK, Shukla S, Srivastav AK, Srivastav SK (2014) N-acetyl cysteine and selenium protects mercuric chloride-induced oxidative stress and antioxidant defense system in liver and kidney of rats: a histopathological approach. J Trace Elem Med Biol Organ Soc Miner Trace Elem 28(2):218–226. doi:10.1016/j.jtemb.2013.12.006
Ralston NV, Raymond LJ (2010) Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 278(1):112–123. doi:10.1016/j.tox.2010.06.004
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275
Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169
Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1):18–52. doi:10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180(3):222–229. doi:10.1016/j.toxlet.2008.06.869
Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11. doi:10.1186/1743-8977-11-11
Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156–162. doi:10.1016/j.toxlet.2009.07.009
Kaur P, Kaur G, Bansal MP (2006) Tertiary-butyl hydroperoxide induced oxidative stress and male reproductive activity in mice: role of transcription factor NF-kappaB and testicular antioxidant enzymes. Reprod Toxicol 22(3):479–484. doi:10.1016/j.reprotox.2006.03.017
Vaisberg CN, Jelezarsky LV, Dishlianova B, Chaushev TA (2005) Activity, substrate detection and immunolocalization of glutathione peroxidase (GPx) in bovine reproductive organs and semen. Theriogenology 64(2):416–428. doi:10.1016/j.theriogenology.2004.12.009
Baek IJ, Seo DS, Yon JM, Lee SR, Jin Y, Nahm SS, Jeong JH, Choo YK, Kang JK, Lee BJ, Yun YW, Nam SY (2007) Tissue expression and cellular localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA in male mice. J Mol Histol 38(3):237–244. doi:10.1007/s10735-007-9092-7
Su L, Wang M, Yin ST, Wang HL, Chen L, Sun LG, Ruan DY (2008) The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicol Environ Saf 70(3):483–489. doi:10.1016/j.ecoenv.2007.05.018
Leal ML, de Camargo EV, Ross DH, Molento MB, Lopes ST, da Rocha JB (2010) Effect of selenium and vitamin E on oxidative stress in lambs experimentally infected with Haemonchus contortus. Vet Res Commun 34(6):549–555. doi:10.1007/s11259-010-9426-x
de Camargo EV, Lopes ST, Costa MM, Paim F, Barbosa CS, Leal ML (2010) Neutrophil oxidative metabolism and haemogram of sheep experimentally infected with Haemonchus contortus and supplemented with selenium and vitamin E. J Anim Physiol Anim Nutr (Berl) 94(5):e1–e6. doi:10.1111/j.1439-0396.2010.00986.x
Xu SZ, Lee SH, Lillehoj HS, Bravo D (2015) Dietary sodium selenite affects host intestinal and systemic immune response and disease susceptibility to necrotic enteritis in commercial broilers. Br Poult Sci 56(1):103–112. doi:10.1080/00071668.2014.984160
Vogl AW, Pfeiffer DC, Redenbach DM (1991) Ectoplasmic (“junctional”) specializations in mammalian Sertoli cells: influence on spermatogenic cells. Ann N Y Acad Sci 637:175–202
Vogl AW (1996) Spatially dynamic intercellular adhesion junction is coupled to a microtubule-based motility system: evidence from an in vitro binding assay. Cell Motil Cytoskeleton 34(1):1–12. doi:10.1002/(SICI)1097-0169(1996)34:1<1::AID-CM1>3.0.CO;2-G
Sun LH, Zhang NY, Zhu MK, Zhao L, Zhou JC, Qi DS (2016) Prevention of aflatoxin B1 hepatoxicity by dietary selenium is associated with inhibition of cytochrome P450 isozymes and up-regulation of 6 selenoprotein genes in chick liver. J Nutr. doi:10.3945/jn.115.224626
Bitiktas S, Tan B, Batakci M, Kavraal S, Dursun N, Suer C (2016) Effects of selenium treatment on 6-n-propyl-2-thiouracil-induced impairment of long-term potentiation. Neurosci Res. doi:10.1016/j.neures.2016.02.001
Abarikwu SO, Adebayo OL, Otuechere CA, Iserhienrhien BO, Badejo TA (2016) Selenium and rutin alone or in combination do not have stronger protective effects than their separate effects against cadmium-induced renal damage. Pharm Biol 54(5):896–904. doi:10.3109/13880209.2015.1089912
Ma W, Jing L, Valladares A, Mehta SL, Wang Z, Li PA, Bang JJ (2015) Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. Int J Biol Sci 11(8):860–867. doi:10.7150/ijbs.12059
Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A (2015) Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress. J Trace Elem Med Biol 32:135–144. doi:10.1016/j.jtemb.2015.06.010
Bas H, Kalender Y (2015) Nephrotoxic effects of lead nitrate exposure in diabetic and nondiabetic rats: involvement of oxidative stress and the protective role of sodium selenite. Environ Toxicol. doi:10.1002/tox.22130