Statistical mechanics for natural flocks of birds

William Bialek1, Andrea Cavagna2,3, Irene Giardina2,3, Thierry Mora4, Edmondo Silvestri2,3, Massimiliano Viale2,3, Aleksandra M. Walczak5
1Joseph Henry Laboratories of Physics and Lewis—Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544;
2Dipartimento di Fisica, Universitá Sapienza, Rome, Italy;
3Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Rome, Italy
4Laboratoire de Physique Statistique de l’École Normale Supérieure, Centre National de la Recherche Scientifique and University Paris VI, Paris, France; and
5Laboratoire de Physique Théorique de l’École Normale Supérieure, Centre National de la Recherche Scientifique and University Paris VI, Paris, France

Tóm tắt

Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.

Từ khóa


Tài liệu tham khảo

S Camazine, et al. Self-Organization in Biological Systems (Princeton Univ Press, Princeton, 2003).

10.1126/science.177.4047.393

10.1038/scientificamerican0879-158

10.1016/S0065-3454(03)01001-5

J Binney, NJ Dowrick, AJ Fisher, MEJ Newman The Theory of Critical Phenomena (Oxford Univ Press, Oxford, 1992).

10.1103/PhysRevLett.75.1226

10.1103/PhysRevLett.75.4326

10.1103/PhysRevE.58.4828

10.1103/PhysRevLett.92.025702

10.1103/PhysRev.106.620

10.1016/j.anbehav.2008.02.004

10.1016/j.anbehav.2008.02.002

10.1016/j.anbehav.2008.02.003

10.1073/pnas.0711437105

10.1103/PhysRevLett.106.090601

10.1103/PhysRevE.83.051123

10.1073/pnas.1005766107

10.1142/S0218202510004660

10.1073/pnas.1001763107

10.1073/pnas.1107583108

10.1073/pnas.1109355108

10.1038/nature04701

G Tkačik E Schneidman MJ Berry W Bialek Ising models for networks of real neurons. arXiv:q-bio/0611072. (2006).

10.1523/JNEUROSCI.1282-06.2006

10.1073/pnas.0609152103

G Tkačik Information flow in biological networks. (Princeton University Princeton NJ Dissertation. (2007).

W Bialek R Ranganathan Rediscovering the power of pairwise interactions. arXiv:0712.4397 [q-bio.QM]. (2007).

10.1523/JNEUROSCI.3359-07.2008

10.1093/cercor/bhn047

G Tkačik E Schneidman ML Berry W Bialek Spin glass models for networks of real neurons. arXiv:0912.5409 [q-bio.NC]. (2009).

10.1073/pnas.0805923106

10.1016/j.cell.2009.07.038

10.1073/pnas.1001705107

10.1103/PhysRevE.81.066119

10.1007/s10955-011-0229-4

10.1103/PhysRev.102.1217