Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites
Tài liệu tham khảo
Kroto, 1985, C60 buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0
R.E. Smalley, D.T. Colbert, Self assembly of fullerene tubes and balls, talk to: Robert A. Welch Foundation, October 1995
Treacy, 1996, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381, 678, 10.1038/381678a0
Yakobson, 1997, Fullerene nanotubes: C1,000,000 and beyond, American Scientist, 85, 324
Ajayan, 2000, Single-walled carbon nanotube–polymer composites: Strength and weakness, Adv. Mater., 12, 750, 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
Bower, 1999, Deformation of carbon nanotubes in nanotube–polymer composites, Appl. Phys. Lett., 74, 3317, 10.1063/1.123330
de la Chapelle, 1999, Raman characterization of singlewalled carbon nanotubes and PMMA-nanotubes composites, Synth. Met., 103, 2510, 10.1016/S0379-6779(98)01080-7
Gong, 2000, Surfactant-assisted processing of carbon nanotube/polymer composite, Chem. Mater., 12, 1049, 10.1021/cm9906396
Haggemueller, 2000, Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett., 330, 219, 10.1016/S0009-2614(00)01013-7
Jia, 1999, Study on poly(methylmethacrylate)/carbon nanotube composites, Mater. Sci. Engrg. A, 271, 395, 10.1016/S0921-5093(99)00263-4
Jin, 1998, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Appl. Phys. Lett., 73, 1197, 10.1063/1.122125
Qian, 2000, Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites, Appl. Phys. Lett., 76, 2868, 10.1063/1.126500
Schaffer, 1999, Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater., 11, 937, 10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
Schadler, 1998, Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett., 73, 3842, 10.1063/1.122911
Robertson, 1992, Energetics of nanoscale graphitic tubules, Phys. Rev. B, 45, 12592, 10.1103/PhysRevB.45.12592
Nardelli, 1998, Mechanism of strain release in carbon nanotubes, Phys. Rev. B, 57, R4277, 10.1103/PhysRevB.57.R4277
Reich, 2002, Elastic properties of carbon nanotubes under hydrostatic pressure, Phys. Rev. B, 65, 153407, 10.1103/PhysRevB.65.153407
J. Hamaekers, Ebene-Wellen basiertes, adaptives und paralleles Verfahren für die Dichtefunktionaltheorie, Diplomarbeit, Institut für Angewandte Mathematik, Universität Bonn, Germany, 2002
Hernández, 1998, Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett., 80, 4502, 10.1103/PhysRevLett.80.4502
Yakobson, 1996, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett., 76, 2511, 10.1103/PhysRevLett.76.2511
Cornwell, 1997, Elastic properties of single-walled carbon nanotubes in compression, Solid State Commun., 101, 555, 10.1016/S0038-1098(96)00742-9
Lu, 1997, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., 79, 1297, 10.1103/PhysRevLett.79.1297
A. Caglar, M. Griebel, On the numerical simulation of fullerene nanotubes: C100,000,000 and beyond, in: R. Esser, P. Grassberger, J. Grotendorst, M. Lewerenz (Eds.), Molecular Dynamics on Parallel Computers, NIC, Jülich 8–10 February 1999, World Scientific, 2000
Qian, 2001, Mechanics of C60 in nanotubes, J. Phys. Chem. B, 105, 10753, 10.1021/jp0120108
Belytschko, 2002, Atomistic simulations of nanotube fracture, Phys. Rev. B, 65, 235430, 10.1103/PhysRevB.65.235430
Ni, 2002, Compression of carbon nanotubes filled with C60, CH4, or Ne: Predictions from molecular dynamics simulations, Phys. Rev. Lett., 88, 205505, 10.1103/PhysRevLett.88.205505
Liu, 2003, Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element, Mech. Mater., 35, 69, 10.1016/S0167-6636(02)00200-4
Chen, 2004, Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, Computat. Mater. Sci., 29, 1, 10.1016/S0927-0256(03)00090-9
S.J.V. Frankland, A. Caglar, D.W. Brenner, M. Griebel, Reinforcement mechanisms in polymer nanotube composites: Simulated non-bonded and cross-linked systems, in: Proceedings of the MRS Fall Meeting, 2000
Frankland, 2002, Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube–polymer interfaces, J. Phys. Chem. B, 106, 3046, 10.1021/jp015591+
Frankland, 2003, The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulations, Compos. Sci. Technol., 63, 1655, 10.1016/S0266-3538(03)00059-9
Theodorou, 1986, Atomistic modeling of mechanical properties of polymeric glasses, Macromolecules, 19, 139, 10.1021/ma00155a022
Wojciechowski, 2003, Elastic properties of two-dimensional hard disks in the close-packing limit, J. Chem. Phys., 119, 939, 10.1063/1.1577531
Parrinello, 1980, Crystal structure and pair potentials: A molecular-dynamics study, Phys. Rev. Lett., 45, 1196, 10.1103/PhysRevLett.45.1196
Parrinello, 1982, Strain fluctuations and elastic constants, J. Chem. Phys., 76, 2662, 10.1063/1.443248
Ray, 1984, Statistical ensembles and molecular dynamics studies of anisotropic solids, J. Chem. Phys., 80, 4423, 10.1063/1.447221
Ray, 1985, Statistical ensembles and molecular dynamics studies of anisotropic solids II, J. Chem. Phys., 82, 4243, 10.1063/1.448813
Ray, 1988, Elastic constants and statistical ensembles in molecular dynamics, Compos. Phys. Rep., 8, 109, 10.1016/0167-7977(88)90009-3
Gusev, 1996, Fluctuation formula for elastic constants, Phys. Rev. B, 54, 1, 10.1103/PhysRevB.54.1
Karimi, 1997, Temperature dependence of the elastic constants of Ni: Reliability of EAM in predicting thermal properties, Modell. Simul. Mater. Sci. Engrg., 5, 337, 10.1088/0965-0393/5/4/003
Zhou, 2001, Fluctuations and thermodynamics properties of the constant shear strain ensemble, J. Chem. Phys., 114, 8769, 10.1063/1.1367016
Parrinello, 1981, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys., 52, 7182, 10.1063/1.328693
Berendsen, 1984, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684, 10.1063/1.448118
Brown, 1991, Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology, Macromolecules, 24, 2075, 10.1021/ma00008a056
Blonski, 1994, Molecular-dynamics simulations of stress relaxation in metals and polymers, Phys. Rev. B, 49, 6494, 10.1103/PhysRevB.49.6494
Nose, 1983, Constant pressure molecular dynamics for molecular systems, J. Mol. Phys., 50, 1055, 10.1080/00268978300102851
Brenner, 1990, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 42, 9458, 10.1103/PhysRevB.42.9458
Brenner, 1990, Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 46, 1948, 10.1103/PhysRevB.46.1948.2
Lee, 1996, Molecular dynamics simulation of liquid alkanes. I. Thermodynamics and structures of normal alkanes: n-butane to n-heptadecane, Bull. Korean Chem. Soc., 17, 735
M. Griebel, A. Caglar, S. Knapek, G. Zumbusch, Numerische Simulation in der Moleküldynamik. Numerik, Algorithmen, Parallelisierung, Anwendungen, Springer, Berlin, Heidelberg, 2003
Smith, 1993, Calculating the pressure, CCP5 Info. Quart., 39, 14
Beeman, 1976, Some multistep methods for use in molecular dynamics calculations, J. Compos. Phys., 20, 130, 10.1016/0021-9991(76)90059-0
Refson, 1985, Molecular dynamics simulation of solid n-butane, Physica B, 131, 256, 10.1016/0378-4363(85)90158-5
Moller, 1991, Molecular dynamics simulation of a Langmuir–Blodgett film, J. Chem. Phys., 94, 8390, 10.1063/1.460071
Mao, 1999, Molecular dynamics simulations of the filling and decorating of carbon nanotubules, Nanotechnology, 10, 273, 10.1088/0957-4484/10/3/309
Chandrasekharaiah, 1994
Belytschko, 2000
Press, 1992
Avilable from <http://wissrech.iam.uni-bonn.de/research/projects/parnass2/index.html>
Xia, 2002, Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure, Phys. Rev. B, 65, 1, 10.1103/PhysRevB.65.155415
Dereli, 2003, Structural stability and energetics of single-walled carbon nanotubes under uniaxial strain, Phys. Rev. B, 67, 1, 10.1103/PhysRevB.67.035416
Brenner, 2002, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter, 14, 783, 10.1088/0953-8984/14/4/312