Site preference, atomic ordering, electronic structure and chemical bonding of A3Pd5 (A= Mg, Al, Ga): First principles study

Solid State Sciences - Tập 113 - Trang 106544 - 2021
Harshit1,2, Nilanjan Roy1, Aurab Chakrabarty3, Partha P. Jana1
1Department of Chemistry, IIT Kharagpur, Kharagpur, India
2Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur, India
3Chhatrapati Shivaji Maharaj University, Panvel, Navi-Mumbai, India

Tài liệu tham khảo

Kanatzidis, 2005, The metal flux: a preparative tool for the exploration of intermetallic compounds, Angew. Chem. Int. Ed., 44, 6996, 10.1002/anie.200462170 Cinca, 2013 Westbrook, 1995, vol. 1 Nesper, 1991, Bonding patterns in intermetallic compounds, Angew Chem. Int. Ed. Engl., 30, 789, 10.1002/anie.199107891 Pottgen, 2014 Xiao, 2018, Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis, ACS Catal., 8, 3237, 10.1021/acscatal.7b04420 Armbrüster, 2014, Intermetallic compounds in heterogeneous catalysis-a quickly developing field, Sci. Technol. Adv. Mater., 15, 10.1088/1468-6996/15/3/034803 Armbrüster, 2010, Pd−Ga intermetallic compounds as highly selective semihydrogenation catalysts, J. Am. Chem. Soc., 132, 14745, 10.1021/ja106568t Matselko, 2017, The first ternary phase in the Ga-Sn-Pd system: synthesis, crystal structure, and catalytic properties of Ga 2+ x + y Sn 4- x Pd 9, Eur. J. Inorg. Chem., 2017, 3542, 10.1002/ejic.201700481 Matselko, 2019, Phase relations in the ternary system Ga–Pd–Sn at 500 °C, Mater. Char., 147, 443, 10.1016/j.matchar.2018.11.012 Tsai, 2017, Intermetallic: a pseudoelement for catalysis, Acc. Chem. Res., 50, 2879, 10.1021/acs.accounts.7b00476 Kohlmann, 2007, Refinement of the crystal structures of palladium-rich in-Pd compounds by X-ray and neutron powder diffraction., to Z. Naturforsch, B: Chem. Sci., 62, 929 Schubert, 1958, Einige strukturelle ergebnisse an metallischen phasen III, Naturwissenschaften, 45, 360, 10.1007/BF00600681 Schubert, 1959, Zum Aufbau der Systeme Kobalt-Gallium, Palladium-Gallium, Palladium-Zinn und verwandter Legierungen, Z. Metallkd., 50, 534 Ellner, 1982, 117 Wannek, 2001, Structure and thermal stability of the new intermetallics MgPd2, MgPd3, and Mg3Pd5 and the kinetics of the iodine-catalyzed formation of MgPd2, J. Solid State Chem., 159, 113, 10.1006/jssc.2001.9138 Roy, 2020, Site preference and atomic ordering in the structure of In3Pd5: a theoretical study, J. Solid State Chem., 290, 121567, 10.1016/j.jssc.2020.121567 Giannozzi, 2009, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502 Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864 Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Methfessel, 1989, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40, 3616, 10.1103/PhysRevB.40.3616 Fischer, 1992, General methods for geometry and wave function optimization, J. Phys. Chem., 96, 9768, 10.1021/j100203a036 Dronskowski, 1993, Crystal orbital Hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations, J. Phys. Chem., 97, 8617, 10.1021/j100135a014 Deringer, 2011, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem., 115, 5461, 10.1021/jp202489s Maintz, 2013, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids, J. Comput. Chem., 34, 2557, 10.1002/jcc.23424 Maintz, 2016, Efficient rotation of local basis functions using real spherical harmonics, Acta Phys. Pol. B, 47, 1165, 10.5506/APhysPolB.47.1165 Maintz, 2016, LOBSTER: a tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem., 37, 1030, 10.1002/jcc.24300 Tang, 2009, A grid-based Bader analysis algorithm without lattice bias, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/8/084204 Sanville, 2007, Improved grid-based algorithm for Bader charge allocation, J. Comput. Chem., 28, 899, 10.1002/jcc.20575 Henkelman, 2006, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci., 36, 354, 10.1016/j.commatsci.2005.04.010 Yu, 2011, Accurate and efficient algorithm for Bader charge integration, J. Chem. Phys., 134, 10.1063/1.3553716 Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970