Site preference, atomic ordering, electronic structure and chemical bonding of A3Pd5 (A= Mg, Al, Ga): First principles study
Tài liệu tham khảo
Kanatzidis, 2005, The metal flux: a preparative tool for the exploration of intermetallic compounds, Angew. Chem. Int. Ed., 44, 6996, 10.1002/anie.200462170
Cinca, 2013
Westbrook, 1995, vol. 1
Nesper, 1991, Bonding patterns in intermetallic compounds, Angew Chem. Int. Ed. Engl., 30, 789, 10.1002/anie.199107891
Pottgen, 2014
Xiao, 2018, Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis, ACS Catal., 8, 3237, 10.1021/acscatal.7b04420
Armbrüster, 2014, Intermetallic compounds in heterogeneous catalysis-a quickly developing field, Sci. Technol. Adv. Mater., 15, 10.1088/1468-6996/15/3/034803
Armbrüster, 2010, Pd−Ga intermetallic compounds as highly selective semihydrogenation catalysts, J. Am. Chem. Soc., 132, 14745, 10.1021/ja106568t
Matselko, 2017, The first ternary phase in the Ga-Sn-Pd system: synthesis, crystal structure, and catalytic properties of Ga 2+ x + y Sn 4- x Pd 9, Eur. J. Inorg. Chem., 2017, 3542, 10.1002/ejic.201700481
Matselko, 2019, Phase relations in the ternary system Ga–Pd–Sn at 500 °C, Mater. Char., 147, 443, 10.1016/j.matchar.2018.11.012
Tsai, 2017, Intermetallic: a pseudoelement for catalysis, Acc. Chem. Res., 50, 2879, 10.1021/acs.accounts.7b00476
Kohlmann, 2007, Refinement of the crystal structures of palladium-rich in-Pd compounds by X-ray and neutron powder diffraction., to Z. Naturforsch, B: Chem. Sci., 62, 929
Schubert, 1958, Einige strukturelle ergebnisse an metallischen phasen III, Naturwissenschaften, 45, 360, 10.1007/BF00600681
Schubert, 1959, Zum Aufbau der Systeme Kobalt-Gallium, Palladium-Gallium, Palladium-Zinn und verwandter Legierungen, Z. Metallkd., 50, 534
Ellner, 1982, 117
Wannek, 2001, Structure and thermal stability of the new intermetallics MgPd2, MgPd3, and Mg3Pd5 and the kinetics of the iodine-catalyzed formation of MgPd2, J. Solid State Chem., 159, 113, 10.1006/jssc.2001.9138
Roy, 2020, Site preference and atomic ordering in the structure of In3Pd5: a theoretical study, J. Solid State Chem., 290, 121567, 10.1016/j.jssc.2020.121567
Giannozzi, 2009, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/39/395502
Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Methfessel, 1989, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40, 3616, 10.1103/PhysRevB.40.3616
Fischer, 1992, General methods for geometry and wave function optimization, J. Phys. Chem., 96, 9768, 10.1021/j100203a036
Dronskowski, 1993, Crystal orbital Hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations, J. Phys. Chem., 97, 8617, 10.1021/j100135a014
Deringer, 2011, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem., 115, 5461, 10.1021/jp202489s
Maintz, 2013, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids, J. Comput. Chem., 34, 2557, 10.1002/jcc.23424
Maintz, 2016, Efficient rotation of local basis functions using real spherical harmonics, Acta Phys. Pol. B, 47, 1165, 10.5506/APhysPolB.47.1165
Maintz, 2016, LOBSTER: a tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem., 37, 1030, 10.1002/jcc.24300
Tang, 2009, A grid-based Bader analysis algorithm without lattice bias, J. Phys. Condens. Matter, 21, 10.1088/0953-8984/21/8/084204
Sanville, 2007, Improved grid-based algorithm for Bader charge allocation, J. Comput. Chem., 28, 899, 10.1002/jcc.20575
Henkelman, 2006, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci., 36, 354, 10.1016/j.commatsci.2005.04.010
Yu, 2011, Accurate and efficient algorithm for Bader charge integration, J. Chem. Phys., 134, 10.1063/1.3553716
Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970