The ESR1 gene is associated with risk for canine mammary tumours

Springer Science and Business Media LLC - Tập 9 - Trang 1-9 - 2013
Kaja Sverdrup Borge1, Malin Melin2, Patricio Rivera3,4, Stein Istre Thoresen5, Matthew Thomas Webster2, Henrik von Euler6, Kerstin Lindblad-Toh2,7, Frode Lingaas1
1Section of Genetics, Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Norway
2Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
3During the present work: Department of Animal Breeding and Genetics, Uppsala University, Uppsala, Sweden
4Currently: Bagarmossen Animal Hospital, Stockholm, Sweden
5Section for Clinical Pathology, Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Norway
6Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
7Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, USA

Tóm tắt

The limited within-breed genetic heterogeneity and an enrichment of disease-predisposing alleles have made the dog a very suitable model for the identification of genes associated with risk for specific diseases. Canine mammary cancer is an example of such a disease. However, the underlying inherited risk factors for canine mammary tumours (CMTs) are still largely unknown. In this study, 52 single nucleotide polymorphisms (SNPs) in ten human cancer-associated genes were genotyped in two different datasets in order to identify genes/alleles associated with the development of CMTs. The first dataset consisted of English Springer Spaniel (ESS) CMT cases and controls. ESS is a dog breed known to be at increased risk of developing CMTs. In the second dataset, dogs from breeds known to have a high frequency of CMTs were compared to dogs from breeds with a lower occurrence of these tumours. We found significant associations to CMT for SNPs and haplotypes in the estrogen receptor 1 (ESR1) gene in the ESS material (best P Bonf  = 0.021). A large number of SNPs, among them several SNPs in ESR1, showed significantly different allele frequencies between the high and low risk breed groups (best P Bonf  = 8.8E-32, best P BPerm  = 0.076). The identification of CMT-associated SNPs in ESR1 in two independent datasets suggests that this gene might be involved in CMT development. These findings also support that CMT may serve as a good model for human breast cancer research.

Tài liệu tham khảo

Patterson DF: Companion animal medicine in the age of medical genetics. J Vet Intern Med. 2000, 14: 1-9. 10.1111/j.1939-1676.2000.tb01492.x. Bronden LB, Nielsen SS, Toft N, Kristensen AT: Data from the Danish veterinary cancer registry on the occurrence and distribution of neoplasms in dogs in Denmark. Vet Rec. 2010, 166: 586-590. 10.1136/vr.b4808. Egenvall A, Bonnett BN, Ohagen P, Olson P, Hedhammar A, von Euler H: Incidence of and survival after mammary tumors in a population of over 80,000 insured female dogs in Sweden from 1995 to 2002. Prev Vet Med. 2005, 69: 109-127. 10.1016/j.prevetmed.2005.01.014. Boldizsar H, Szenci O, Muray T, Csenki J: Studies on canine mammary tumours. I. Age, seasonal and breed distribution. Acta Vet Hung. 1992, 40: 75-87. Arnesen K, Gamlem H, Glattre E, Grøndalem J, Moe L, Nordstoga K: The Norwegian canine cancer register 1990–1998. Report from the project "Cancer in the dog". EJCAP. 2001, 11: 159-169. Dahl K, Moe L, Indrebø I, Gamlem H: Forekomst av mammatumor hos beslektede boxere [Occurence of mammary tumor in related Boxers]. Nor Vet Tidsskr. 2002, 114: 615-622. Priester WA: Occurrence of mammary neoplasms in bitches in relation to breed, age, tumour type, and geographical region from which reported. J Small Anim Pract. 1979, 20: 1-11. 10.1111/j.1748-5827.1979.tb07014.x. Moe L: Population-based incidence of mammary tumours in some dog breeds. J Reprod Fertil Suppl. 2001, 57: 439-443. Queiroga FL, Raposo T, Carvalho MI, Prada J, Pires I: Canine mammary tumours as a model to study human breast cancer: most recent findings. In Vivo. 2011, 25: 455-465. Owen LN: A comparative study of canine and human breast cancer. Invest Cell Pathol. 1979, 2: 257-275. Rivera P, Melin M, Biagi T, Fall T, Haggstrom J, Lindblad-Toh K, von Euler H: Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Research. 2009, 69: 8770-8774. 10.1158/0008-5472.CAN-09-1725. Veldhoen N, Watterson J, Brash M, Milner J: Identification of tumour-associated and germ line p53 mutations in canine mammary cancer. Br J Cancer. 1999, 81: 409-415. 10.1038/sj.bjc.6690709. Borge KS, Borresen-Dale AL, Lingaas F: Identification of genetic variation in 11 candidate genes of canine mammary tumour. Vet Comp Oncol. 2011, 9: 241-250. 10.1111/j.1476-5829.2010.00250.x. Ng PC, Henikoff S: Predicting deleterious amino acid substitutions. Genome Res. 2001, 11: 863-874. 10.1101/gr.176601. Jones DR, Schmidt RJ, Pickard RT, Foxworthy PS, Eacho PI: Estrogen receptor-mediated repression of human hepatic lipase gene transcription. J Lipid Res. 2002, 43: 383-391. Ensembl release 67: [http://www.ensembl.org/index.html] Norris JD, Fan D, Kerner SA, McDonnell DP: Identification of a third autonomous activation domain within the human estrogen receptor. Mol Endocrinol. 1997, 11: 747-754. 10.1210/me.11.6.747. Herynk MH, Fuqua SA: Estrogen receptor mutations in human disease. Endocr Rev. 2004, 25: 869-898. 10.1210/er.2003-0010. Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, Singh R, Bhasin S, Jasuja R: The dynamic structure of the estrogen receptor. J Amino Acids. 2011, 2011: 812540. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA: International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev. 2006, 58: 773-781. 10.1124/pr.58.4.8. Anghel A, Raica M, Narita D, Seclaman E, Nicola T, Ursoniu S, Anghel M, Popovici E: Estrogen receptor alpha polymorphisms: correlation with clinicopathological parameters in breast cancer. Neoplasma. 2010, 57: 306-315. Vasconcelos A, Medeiros R, Veiga I, Pereira D, Carrilho S, Palmeira C, Azevedo C, Lopes CS: Analysis of estrogen receptor polymorphism in codon 325 by PCR-SSCP in breast cancer: association with lymph node metastasis. Breast J. 2002, 8: 226-229. 10.1046/j.1524-4741.2002.08407.x. Kallel I, Rebai M, Khabir A, Farid NR, Rebai A: Genetic polymorphisms in the EGFR (R521K) and estrogen receptor (T594T) genes, EGFR and ErbB-2 protein expression, and breast cancer risk in Tunisia. J Biomed Biotechnol. 2009, 2009: 753683. Toniti W, Suthiyotha N, Puchadapirom P, Jenwitheesuk E: Binding capacity of ER-alpha ligands and SERMs: comparison of the human, dog and cat. Asian Pac J Cancer Prev. 2011, 12: 2875-2879. Tapper W, Hammond V, Gerty S, Ennis S, Simmonds P, Collins A, Eccles D: The influence of genetic variation in 30 selected genes on the clinical characteristics of early onset breast cancer. Breast Cancer Res. 2008, 10: R108-10.1186/bcr2213. Montano MM, Muller V, Trobaugh A, Katzenellenbogen BS: The carboxy-terminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol Endocrinol. 1995, 9: 814-825. 10.1210/me.9.7.814. Goldschmidt M, Pena L, Rasotto R, Zappulli V: Classification and grading of canine mammary tumors. Vet Pathol. 2011, 48: 117-131. 10.1177/0300985810393258. Karlsson EK, Lindblad-Toh K: Leader of the pack: gene mapping in dogs and other model organisms. Nat Rev Genet. 2008, 9: 713-725. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007, 81: 559-575. 10.1086/519795. PLINK (version 1.07): [http://pngu.mgh.harvard.edu/purcell/plink/] Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005, 21: 263-265. 10.1093/bioinformatics/bth457. Haploview: [http://www.broadinstitute.org/haploview] VassarStats:Website for statistical computation: [http://vassarstats.net].