Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gardner, 2017, Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults, Blood, 129, 3322, 10.1182/blood-2017-02-769208
Lee, 2015, T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial, Lancet, 385, 517, 10.1016/S0140-6736(14)61403-3
Maude, 2014, Chimeric antigen receptor T cells for sustained remissions in leukemia, N. Engl. J. Med., 371, 1507, 10.1056/NEJMoa1407222
Qin, 2015, Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein, Blood, 126, 629, 10.1182/blood-2014-11-612903
Maude, 2018, Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia, N. Engl. J. Med., 378, 439, 10.1056/NEJMoa1709866
Ruella, 2016, Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies, J. Clin. Invest., 126, 3814, 10.1172/JCI87366
Neelapu, 2017, Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma, N. Engl. J. Med., 377, 2531, 10.1056/NEJMoa1707447
Shalabi, 2018, Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma, Haematologica, 103, e215, 10.3324/haematol.2017.183459
Haso, 2013, Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia, Blood, 121, 1165, 10.1182/blood-2012-06-438002
Kantarjian, 2016, Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia, N. Engl. J. Med., 375, 740, 10.1056/NEJMoa1509277
Wayne, 2017, Phase 1 study of the anti-CD22 immunotoxin moxetumomab pasudotox for childhood acute lymphoblastic leukemia, Blood, 130, 1620, 10.1182/blood-2017-02-749101
Fry, 2018, CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy, Nat. Med., 24, 20, 10.1038/nm.4441
Grada, 2013, TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy, Mol. Ther. Nucleic Acids, 2, e105, 10.1038/mtna.2013.32
Hegde, 2013, Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma, Mol. Ther., 21, 2087, 10.1038/mt.2013.185
Bielamowicz, 2018, Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma, Neuro Oncol., 20, 506, 10.1093/neuonc/nox182
Hegde, 2016, Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape, J. Clin. Invest., 126, 3036, 10.1172/JCI83416
Raponi, 2011, Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases, Leuk. Lymphoma, 52, 1098, 10.3109/10428194.2011.559668
Wen, 2013, Discovery and investigation of O-xylosylation in engineered proteins containing a (GGGGS)n linker, Anal. Chem., 85, 4805, 10.1021/ac400596g
Wu, 2009, Diabodies: molecular engineering and therapeutic applications, Drug News Perspect., 22, 453, 10.1358/dnp.2009.22.8.1413783
Grupp, 2013, Chimeric antigen receptor-modified T cells for acute lymphoid leukemia, N. Engl. J. Med., 368, 1509, 10.1056/NEJMoa1215134
Sotillo, 2015, Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy, Cancer Discov., 5, 1282, 10.1158/2159-8290.CD-15-1020
Jacoby, 2016, CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity, Nat. Commun., 7, 12320, 10.1038/ncomms12320
Ruella, 2017, Clinical efficacy of anti-CD22 chimeric antigen receptor T cells for B-cell acute lymphoblastic leukemia is correlated with the length of the Scfv linker and can be predicted using xenograft models, Blood, 130, 807, 10.1182/blood.V130.Suppl_1.807.807