Sensor nodes fault detection for agricultural wireless sensor networks based on NMF

Computers and Electronics in Agriculture - Tập 161 - Trang 214-224 - 2019
Jimmy Ludeña-Choez1, Juan J. Choquehuanca-Zevallos1, Efraín Mayhua-López1
1Electronics and Telecommunications Engineering Research Center, Dirección de Investigación, Universidad Católica San Pablo, Arequipa, Peru

Tài liệu tham khảo

Ayadi, 2015, A machine learning methods: outlier detection in WSN, 722 Bakshi, 1998, Multiscale PCA with application to multivariate statistical process monitoring, AIChE J., 44, 1596, 10.1002/aic.690440712 Chang, 2011, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol., 2, 27:1, 10.1145/1961189.1961199 Chen, 2015, A MSPCA based intrusion detection algorithm tor detection of DDoS attack, 1 Chen, 2016, Combining MIC feature selection and feature-based MSPCA for network traffic anomaly detection, 176 Chen, 2017, Detection of network anomalies using improved-MSPCA with sketches, Comput. Secur., 65, 314, 10.1016/j.cose.2016.10.010 Christopher, 2016 Cichocki, 2009 Filippone, 2008, A survey of kernel and spectral methods for clustering, Pattern Recogn., 41, 176, 10.1016/j.patcog.2007.05.018 Ghorbel, O., Abid, M., Snoussi, H., 2014. Improved KPCA for outlier detection in Wireless Sensor Networks. In: 1st Intl. Conf. on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 507–511. Giantomassi, A., Ferracuri, F., Iarlori, S., Puglia, G., Fonti, A., Comodi, G., Longhi, S., 2014. Smart home heating system malfunction and bad behavior diagnosis by multi-scale PCA under indoor temperature feedback control. In: 22nd Mediterranean Conf. on Control and Automation, pp. 876–881. Hoffmann, 2007, Kernel PCA for novelty detection, Pattern Recogn., 40, 863, 10.1016/j.patcog.2006.07.009 Jolliffe, 1986, Principal component analysis and factor analysis, 115 Jurdak, 2011, Wireless sensor network anomalies: diagnosis and detection strategies, 309 Lee, 1999, Algorithms for non-negative matrix factorization, Nature, 401, 788, 10.1038/44565 Ludena-Choez, 2012 Ludena-Choez, 2013 Ludena-Choez, 2016, Acoustic event classification using spectral band selection and Non-Negative Matrix Factorization-based features, Exp. Systs. Appl., 46, 77, 10.1016/j.eswa.2015.10.018 Mohamed, M.K., Ibrahim, M., Ahmad, H., 2014. Wireless sensor network in precision agriculture application. In: Intl. Conf. on Computer, Information and Telecommunication Systems (CITS). Toulouse, pp. 1–5. Muhammed, 2017, An analysis of fault detection strategies in wireless sensor networks, J. Netw. Comput. Appl., 78, 267, 10.1016/j.jnca.2016.10.019 Nakanishi, T., 2014. A generative wireless sensor network framework for agricultural use. In: Makassar Intl. Conf. on Electrical Engineering and Informatics (MICEEI), pp. 205–211. Nandurkar, S., Thool, V., Thool, R., 2014. Design and development of precision agriculture system using wireless sensor network. In: First Intl. Conf. on Automation, Control, Energy and Systems (ACES), pp. 1–6. Ni, 2009, Sensor network data fault types, ACM Trans. Sen. Netw., 5, 25:1, 10.1145/1525856.1525863 Nounou, 2006, Multiscale finite impulse response modeling, Eng. Appl. Artif. Intell., 19, 289, 10.1016/j.engappai.2005.09.007 Nounou, 2007, Improving the prediction and parsimony of ARX models using multiscale estimation, Appl. Soft Comput., 7, 711, 10.1016/j.asoc.2005.12.004 Ojha, 2015, Wireless sensor networks for agriculture: the state-of-the-art in practice and future challenges, Comput. Electron. Agric., 118, 66, 10.1016/j.compag.2015.08.011 Schölkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299, 10.1162/089976698300017467 Schuller, B., Weninger, F., Wollmer, M., Sun, Y., Rigoll, G., 2010. Non-negative matrix factorization as noise-robust feature extractor for speech recognition. In: Proc. of the Acoustics, Speech, and Signal Processing, Conference 2010 ICASSP-10. Dallas, TX, pp. 4562–4565. Sharmila, 2011, Application of multiscale principal component analysis (MSPCA) for enhancement of ecg signals, 1 UN-WATER, 2007. Coping With Water Scarcity – Challenge of the 21st Century. Technical Report United Nations. Valle, 1999, Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods, Industr. Eng. Chem. Res., 38, 4389, 10.1021/ie990110i Wilson, K., Bhiksha, R., Smaragdis, P., Divakaran, A., 2008. Speech denoising using nonnegative matrix factorization with priors. In: Proc. of the Acoustics, Speech, and Signal Processing, Conference 2008 ICASSP-08, pp. 4029-4032. Ying-xin, X., Xiang-guang, C., Jun, Z., 2011. Data fault detection for wireless sensor networks using multi-scale PCA method. In: 2nd Intl. Conf. on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pp. 7035–7038. Yu-Xiong, 2013, Nonnegative Matrix Factorization: a comprehensive review, IEEE Trans. Knowl. Data Eng., 25, 1336, 10.1109/TKDE.2012.51 Zidi, 2018, Fault detection in wireless sensor networks through SVM classifier, IEEE Sensors J., 18, 340, 10.1109/JSEN.2017.2771226