Evolution of Microbial Genomics: Conceptual Shifts over a Quarter Century
Tài liệu tham khảo
Fleischmann, 1995, Whole-genome random sequencing and assembly of Haemophilus influenzae Rd, Science, 269, 496, 10.1126/science.7542800
Fraser, 1995, The minimal gene complement of Mycoplasma genitalium, Science, 270, 397, 10.1126/science.270.5235.397
Mushegian, 1996, A minimal gene set for cellular life derived by comparison of complete bacterial genomes, Proc. Natl. Acad. Sci. U. S. A., 93, 10268, 10.1073/pnas.93.19.10268
Bult, 1996, Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii, Science, 273, 1058, 10.1126/science.273.5278.1058
Koonin, 1997, Prokaryotic genomes: the emerging paradigm of genome-based microbiology, Curr. Opin. Genet. Dev., 7, 757, 10.1016/S0959-437X(97)80037-8
Zhao, 2020, Keeping up with the genomes: efficient learning of our increasing knowledge of the tree of life, BMC Bioinform., 21, 412, 10.1186/s12859-020-03744-7
Tatusov, 1997, A genomic perspective on protein families, Science, 278, 631, 10.1126/science.278.5338.631
Borodovsky, 1994, Intrinsic and extrinsic approaches for detecting genes in a bacterial genome, Nucleic Acids Res., 22, 4756, 10.1093/nar/22.22.4756
Besemer, 2001, GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions, Nucleic Acids Res., 29, 2607, 10.1093/nar/29.12.2607
Salzberg, 1998, Microbial gene identification using interpolated Markov models, Nucleic Acids Res., 26, 544, 10.1093/nar/26.2.544
Hyatt, 2010, Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinform., 11, 119, 10.1186/1471-2105-11-119
Fitch, 1970, Distinguishing homologous from analogous proteins, Syst. Zool., 19, 99, 10.2307/2412448
Fitch, 2000, Homology a personal view on some of the problems, Trends Genet., 16, 227, 10.1016/S0168-9525(00)02005-9
Koonin, 2005, Orthologs, paralogs and evolutionary genomics, Annu. Rev. Genet., 39, 309, 10.1146/annurev.genet.39.073003.114725
Gabaldon, 2013, Functional and evolutionary implications of gene orthology, Nat. Rev. Genet., 14, 360, 10.1038/nrg3456
Jensen, 2008, eggNOG: automated construction and annotation of orthologous groups of genes, Nucleic Acids Res., 36, D250, 10.1093/nar/gkm796
Chen, 2006, OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups, Nucleic Acids Res., 34, D363, 10.1093/nar/gkj123
Trachana, 2011, Orthology prediction methods: a quality assessment using curated protein families, Bioessays, 33, 769, 10.1002/bies.201100062
Huerta-Cepas, 2017, Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper, Mol. Biol. Evol., 34, 2115, 10.1093/molbev/msx148
Kristensen, 2011, Computational methods for gene orthology inference, Brief. Bioinform., 12, 379, 10.1093/bib/bbr030
Snel, 2002, Genomes in flux: the evolution of archaeal and proteobacterial gene content, Genome Res., 12, 17, 10.1101/gr.176501
Mirkin, 2003, Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes, BMC Evol. Biol., 3, 2, 10.1186/1471-2148-3-2
Csuros, 2010, Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood, Bioinformatics, 26, 1910, 10.1093/bioinformatics/btq315
Cohen, 2011, Inference of gain and loss events from phyletic patterns using stochastic mapping and maximum parsimony – a simulation study, Genome Biol. Evol., 3, 1265, 10.1093/gbe/evr101
Cohen, 2008, A likelihood framework to analyse phyletic patterns, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 363, 3903, 10.1098/rstb.2008.0177
Jacob, 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol., 3, 318, 10.1016/S0022-2836(61)80072-7
Salgado, 2000, Operons in Escherichia coli: genomic analyses and predictions, Proc. Natl. Acad. Sci. U. S. A., 97, 6652, 10.1073/pnas.110147297
Wolf, 2001, Genome alignment, evolution of prokaryotic genome organization and prediction of gene function using genomic context, Genome Res., 11, 356, 10.1101/gr.161901
Rogozin, 2002, Connected gene neighborhoods in prokaryotic genomes, Nucleic Acids Res., 30, 2212, 10.1093/nar/30.10.2212
Janga, 2005, Nebulon: a system for the inference of functional relationships of gene products from the rearrangement of predicted operons, Nucleic Acids Res., 33, 2521, 10.1093/nar/gki545
von Mering, 2007, STRING 7 – recent developments in the integration and prediction of protein interactions, Nucleic Acids Res., 35, D358, 10.1093/nar/gkl825
Aravind, 2000, Guilt by association: contextual information in genome analysis, Genome Res., 10, 1074, 10.1101/gr.10.8.1074
Galperin, 2000, Who's your neighbor? New computational approaches for functional genomics, Nat. Biotechnol., 18, 609, 10.1038/76443
Huynen, 2000, Exploitation of gene context, Curr. Opin. Struct. Biol., 10, 366, 10.1016/S0959-440X(00)00098-1
Moreno-Hagelsieb, 2002, A powerful non-homology method for the prediction of operons in prokaryotes, Bioinformatics, 18, S329, 10.1093/bioinformatics/18.suppl_1.S329
Doron, 2018, Systematic discovery of antiphage defense systems in the microbial pangenome, Science, 359, 10.1126/science.aar4120
Millman, 2020, Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems, Nat. Microbiol., 5, 1608, 10.1038/s41564-020-0777-y
Bernheim, 2020, The pan-immune system of bacteria: antiviral defence as a community resource, Nat. Rev. Microbiol., 18, 113, 10.1038/s41579-019-0278-2
Gao, 2020, Diverse enzymatic activities mediate antiviral immunity in prokaryotes, Science, 369, 1077, 10.1126/science.aba0372
Nielsen, 2005, Large-scale prokaryotic gene prediction and comparison to genome annotation, Bioinformatics, 21, 4322, 10.1093/bioinformatics/bti701
Poptsova, 2010, Using comparative genome analysis to identify problems in annotated microbial genomes, Microbiology (Reading), 156, 1909, 10.1099/mic.0.033811-0
Danchin, 2018, No wisdom in the crowd: genome annotation in the era of big data - current status and future prospects, Microb. Biotechnol., 11, 588, 10.1111/1751-7915.13284
Kisand, 2013, Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools, BMC Genomics, 14, 211, 10.1186/1471-2164-14-211
Forouzan, 2017, Evaluation of nine popular de novo assemblers in microbial genome assembly, J. Microbiol. Methods, 143, 32, 10.1016/j.mimet.2017.09.008
Giani, 2020, Long walk to genomics: History and current approaches to genome sequencing and assembly, Comput. Struct. Biotechnol. J., 18, 9, 10.1016/j.csbj.2019.11.002
Sundquist, 2007, Whole-genome sequencing and assembly with high-throughput, short-read technologies, PLoS One, 2, 10.1371/journal.pone.0000484
Chitsaz, 2011, Efficient de novo assembly of single-cell bacterial genomes from short-read data sets, Nat. Biotechnol., 29, 915, 10.1038/nbt.1966
Bankevich, 2012, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 19, 455, 10.1089/cmb.2012.0021
Schmeisser, 2007, Metagenomics, biotechnology with non-culturable microbes, Appl. Microbiol. Biotechnol., 75, 955, 10.1007/s00253-007-0945-5
Teeling, 2012, Current opportunities and challenges in microbial metagenome analysis – a bioinformatic perspective, Brief. Bioinform., 13, 728, 10.1093/bib/bbs039
Sunagawa, 2015, Ocean plankton. Structure and function of the global ocean microbiome, Science, 348, 10.1126/science.1261359
Ibarbalz, 2019, Global trends in marine plankton diversity across kingdoms of life, Cell, 179, 1084, 10.1016/j.cell.2019.10.008
Schmidt, 2018, The human gut microbiome: from association to modulation, Cell, 172, 1198, 10.1016/j.cell.2018.02.044
Steinegger, 2020, Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank, Genome Biol., 21, 115, 10.1186/s13059-020-02023-1
Castelle, 2018, Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations, Nat. Rev. Microbiol., 16, 629, 10.1038/s41579-018-0076-2
Castelle, 2018, Major new microbial groups expand diversity and alter our understanding of the tree of life, Cell, 172, 1181, 10.1016/j.cell.2018.02.016
Beam, 2020, Ancestral absence of electron transport chains in Patescibacteria and DPANN, Front. Microbiol., 11, 1848, 10.3389/fmicb.2020.01848
Lopez-Garcia, 2021, Physical connections: prokaryotes parasitizing their kin, Environ. Microbiol. Rep., 13, 54, 10.1111/1758-2229.12910
Waters, 2003, The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism, Proc. Natl. Acad. Sci. U. S. A., 100, 12984, 10.1073/pnas.1735403100
Parks, 2017, Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life, Nat. Microbiol., 2, 1533, 10.1038/s41564-017-0012-7
Dombrowski, 2019, Genomic diversity, lifestyles and evolutionary origins of DPANN archaea, FEMS. Microbiol. Lett., 366, 10.1093/femsle/fnz008
Dombrowski, 2020, Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution, Nat. Commun., 11, 3939, 10.1038/s41467-020-17408-w
Brown, 2015, Unusual biology across a group comprising more than 15% of domain Bacteria, Nature, 523, 208, 10.1038/nature14486
Spang, 2015, Complex archaea that bridge the gap between prokaryotes and eukaryotes, Nature, 521, 173, 10.1038/nature14447
Zaremba-Niedzwiedzka, 2017, Asgard archaea illuminate the origin of eukaryotic cellular complexity, Nature, 541, 353, 10.1038/nature21031
Eme, 2018, Archaea and the origin of eukaryotes, Nat. Rev. Microbiol., 16, 120, 10.1038/nrmicro.2017.154
Imachi, 2020, Isolation of an archaeon at the prokaryote-eukaryote interface, Nature, 577, 519, 10.1038/s41586-019-1916-6
Lopez-Garcia, 2020, Cultured Asgard Archaea shed light on eukaryogenesis, Cell, 181, 232, 10.1016/j.cell.2020.03.058
Lopez-Garcia, 2020, The Syntrophy hypothesis for the origin of eukaryotes revisited, Nat. Microbiol., 5, 655, 10.1038/s41564-020-0710-4
Doolittle, 1999, Phylogenetic classification and the universal tree, Science, 284, 2124, 10.1126/science.284.5423.2124
Doolittle, 1999, Lateral genomics, Trends Cell Biol., 9, M5, 10.1016/S0962-8924(99)01664-5
Doolittle, 2000, Uprooting the tree of life, Sci. Am., 282, 90, 10.1038/scientificamerican0200-90
Koonin, 2001, Horizontal gene transfer in prokaryotes: quantification and classification, Annu. Rev. Microbiol., 55, 709, 10.1146/annurev.micro.55.1.709
O'Malley, 2005, Paradigm change in evolutionary microbiology, Stud. Hist. Phil. Biol. Biomed. Sci., 36, 183, 10.1016/j.shpsc.2004.12.002
Bapteste, 2005, Do orthologous gene phylogenies really support tree-thinking?, BMC Evol. Biol., 5, 33, 10.1186/1471-2148-5-33
Doolittle, 2007, Pattern pluralism and the Tree of Life hypothesis, Proc. Natl. Acad. Sci. U. S. A., 104, 2043, 10.1073/pnas.0610699104
Bapteste, 2009, Prokaryotic evolution and the tree of life are two different things, Biol. Direct, 4, 34, 10.1186/1745-6150-4-34
Puigbo, 2009, Search for a Tree of Life in the thicket of the phylogenetic forest, J. Biol., 8, 59, 10.1186/jbiol159
Puigbo, 2010, The tree and net components of prokaryote evolution, Genome Biol. Evol., 2, 745, 10.1093/gbe/evq062
Puigbo, 2013, Seeing the Tree of Life behind the phylogenetic forest, BMC Biol., 11, 46, 10.1186/1741-7007-11-46
O'Malley, 2011, How stands the Tree of Life a century and a half after The Origin?, Biol. Direct, 6, 32, 10.1186/1745-6150-6-32
Medini, 2005, The microbial pan-genome, Curr. Opin. Genet. Dev., 15, 589, 10.1016/j.gde.2005.09.006
Medini, 2008, Microbiology in the post-genomic era, Nat. Rev. Microbiol., 6, 419, 10.1038/nrmicro1901
Medini, 2020, The pangenome: a data-driven discovery in biology, 3
Puigbo, 2014, Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes, BMC Biol., 12, 66, 10.1186/s12915-014-0066-4
Koonin, 2011, Are there laws of genome evolution?, PLoS Comput. Biol., 7, 10.1371/journal.pcbi.1002173
Koonin, 2008, Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world, Nucleic Acids Res., 36, 6688, 10.1093/nar/gkn668
Lobkovsky, 2013, Gene frequency distributions reject a neutral model of genome evolution, Genome Biol. Evol., 5, 233, 10.1093/gbe/evt002
Wolf, 2016, Two fundamentally different classes of microbial genes in a vast genomic universe, Nat. Microbiol., 2, 10.1038/nmicrobiol.2016.208
Andreani, 2017, Prokaryote genome fluidity is dependent on effective population size, ISME J., 11, 1719, 10.1038/ismej.2017.36
van Nimwegen, 2003, Scaling laws in the functional content of genomes, Trends Genet., 19, 479, 10.1016/S0168-9525(03)00203-8
Konstantinidis, 2004, Trends between gene content and genome size in prokaryotic species with larger genomes, Proc. Natl. Acad. Sci. U. S. A., 101, 3160, 10.1073/pnas.0308653100
Molina, 2009, Scaling laws in functional genome content across prokaryotic clades and lifestyles, Trends Genet., 25, 243, 10.1016/j.tig.2009.04.004
Sela, 2019, Selection and genome plasticity as the key factors in the evolution of bacteria, Phys. Rev. X, 9
Kristensen, 2017, ATGC database and ATGC-COGs: an updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation, Nucleic Acids Res., 45, D210, 10.1093/nar/gkw934
Lynch, 2003, The origins of genome complexity, Science, 302, 1401, 10.1126/science.1089370
Lynch, 2007, The frailty of adaptive hypotheses for the origins of organismal complexity, Proc. Natl. Acad. Sci. U. S. A., 104, 8597, 10.1073/pnas.0702207104
Lynch, 2006, Streamlining and simplification of microbial genome architecture, Annu. Rev. Microbiol., 60, 327, 10.1146/annurev.micro.60.080805.142300
Novichkov, 2009, Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes, J. Bacteriol., 191, 65, 10.1128/JB.01237-08
Kuo, 2009, The consequences of genetic drift for bacterial genome complexity, Genome Res., 19, 1450, 10.1101/gr.091785.109
Sela, 2016, Theory of prokaryotic genome evolution, Proc. Natl. Acad. Sci. U. S. A., 113, 11399, 10.1073/pnas.1614083113
Iranzo, 2017, Disentangling the effects of selection and loss bias on gene dynamics, Proc. Natl. Acad. Sci. U. S. A., 114, E616, 10.1073/pnas.1704925114
McInerney, 2017, Why prokaryotes have pangenomes, Nat. Microbiol., 2, 17040, 10.1038/nmicrobiol.2017.40
McInerney, 2020, Pangenomes and selection: the public goods hypothesis, 151
Bobay, 2018, Factors driving effective population size and pan-genome evolution in bacteria, BMC Evol. Biol., 18, 153, 10.1186/s12862-018-1272-4