Evolution of Microbial Genomics: Conceptual Shifts over a Quarter Century

Trends in Microbiology - Tập 29 - Trang 582-592 - 2021
Eugene V. Koonin1, Kira S. Makarova1, Yuri I. Wolf1
1National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA

Tài liệu tham khảo

Fleischmann, 1995, Whole-genome random sequencing and assembly of Haemophilus influenzae Rd, Science, 269, 496, 10.1126/science.7542800 Fraser, 1995, The minimal gene complement of Mycoplasma genitalium, Science, 270, 397, 10.1126/science.270.5235.397 Mushegian, 1996, A minimal gene set for cellular life derived by comparison of complete bacterial genomes, Proc. Natl. Acad. Sci. U. S. A., 93, 10268, 10.1073/pnas.93.19.10268 Bult, 1996, Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii, Science, 273, 1058, 10.1126/science.273.5278.1058 Koonin, 1997, Prokaryotic genomes: the emerging paradigm of genome-based microbiology, Curr. Opin. Genet. Dev., 7, 757, 10.1016/S0959-437X(97)80037-8 Zhao, 2020, Keeping up with the genomes: efficient learning of our increasing knowledge of the tree of life, BMC Bioinform., 21, 412, 10.1186/s12859-020-03744-7 Tatusov, 1997, A genomic perspective on protein families, Science, 278, 631, 10.1126/science.278.5338.631 Borodovsky, 1994, Intrinsic and extrinsic approaches for detecting genes in a bacterial genome, Nucleic Acids Res., 22, 4756, 10.1093/nar/22.22.4756 Besemer, 2001, GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions, Nucleic Acids Res., 29, 2607, 10.1093/nar/29.12.2607 Salzberg, 1998, Microbial gene identification using interpolated Markov models, Nucleic Acids Res., 26, 544, 10.1093/nar/26.2.544 Hyatt, 2010, Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinform., 11, 119, 10.1186/1471-2105-11-119 Fitch, 1970, Distinguishing homologous from analogous proteins, Syst. Zool., 19, 99, 10.2307/2412448 Fitch, 2000, Homology a personal view on some of the problems, Trends Genet., 16, 227, 10.1016/S0168-9525(00)02005-9 Koonin, 2005, Orthologs, paralogs and evolutionary genomics, Annu. Rev. Genet., 39, 309, 10.1146/annurev.genet.39.073003.114725 Gabaldon, 2013, Functional and evolutionary implications of gene orthology, Nat. Rev. Genet., 14, 360, 10.1038/nrg3456 Jensen, 2008, eggNOG: automated construction and annotation of orthologous groups of genes, Nucleic Acids Res., 36, D250, 10.1093/nar/gkm796 Chen, 2006, OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups, Nucleic Acids Res., 34, D363, 10.1093/nar/gkj123 Trachana, 2011, Orthology prediction methods: a quality assessment using curated protein families, Bioessays, 33, 769, 10.1002/bies.201100062 Huerta-Cepas, 2017, Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper, Mol. Biol. Evol., 34, 2115, 10.1093/molbev/msx148 Kristensen, 2011, Computational methods for gene orthology inference, Brief. Bioinform., 12, 379, 10.1093/bib/bbr030 Snel, 2002, Genomes in flux: the evolution of archaeal and proteobacterial gene content, Genome Res., 12, 17, 10.1101/gr.176501 Mirkin, 2003, Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes, BMC Evol. Biol., 3, 2, 10.1186/1471-2148-3-2 Csuros, 2010, Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood, Bioinformatics, 26, 1910, 10.1093/bioinformatics/btq315 Cohen, 2011, Inference of gain and loss events from phyletic patterns using stochastic mapping and maximum parsimony – a simulation study, Genome Biol. Evol., 3, 1265, 10.1093/gbe/evr101 Cohen, 2008, A likelihood framework to analyse phyletic patterns, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 363, 3903, 10.1098/rstb.2008.0177 Jacob, 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol., 3, 318, 10.1016/S0022-2836(61)80072-7 Salgado, 2000, Operons in Escherichia coli: genomic analyses and predictions, Proc. Natl. Acad. Sci. U. S. A., 97, 6652, 10.1073/pnas.110147297 Wolf, 2001, Genome alignment, evolution of prokaryotic genome organization and prediction of gene function using genomic context, Genome Res., 11, 356, 10.1101/gr.161901 Rogozin, 2002, Connected gene neighborhoods in prokaryotic genomes, Nucleic Acids Res., 30, 2212, 10.1093/nar/30.10.2212 Janga, 2005, Nebulon: a system for the inference of functional relationships of gene products from the rearrangement of predicted operons, Nucleic Acids Res., 33, 2521, 10.1093/nar/gki545 von Mering, 2007, STRING 7 – recent developments in the integration and prediction of protein interactions, Nucleic Acids Res., 35, D358, 10.1093/nar/gkl825 Aravind, 2000, Guilt by association: contextual information in genome analysis, Genome Res., 10, 1074, 10.1101/gr.10.8.1074 Galperin, 2000, Who's your neighbor? New computational approaches for functional genomics, Nat. Biotechnol., 18, 609, 10.1038/76443 Huynen, 2000, Exploitation of gene context, Curr. Opin. Struct. Biol., 10, 366, 10.1016/S0959-440X(00)00098-1 Moreno-Hagelsieb, 2002, A powerful non-homology method for the prediction of operons in prokaryotes, Bioinformatics, 18, S329, 10.1093/bioinformatics/18.suppl_1.S329 Doron, 2018, Systematic discovery of antiphage defense systems in the microbial pangenome, Science, 359, 10.1126/science.aar4120 Millman, 2020, Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems, Nat. Microbiol., 5, 1608, 10.1038/s41564-020-0777-y Bernheim, 2020, The pan-immune system of bacteria: antiviral defence as a community resource, Nat. Rev. Microbiol., 18, 113, 10.1038/s41579-019-0278-2 Gao, 2020, Diverse enzymatic activities mediate antiviral immunity in prokaryotes, Science, 369, 1077, 10.1126/science.aba0372 Nielsen, 2005, Large-scale prokaryotic gene prediction and comparison to genome annotation, Bioinformatics, 21, 4322, 10.1093/bioinformatics/bti701 Poptsova, 2010, Using comparative genome analysis to identify problems in annotated microbial genomes, Microbiology (Reading), 156, 1909, 10.1099/mic.0.033811-0 Danchin, 2018, No wisdom in the crowd: genome annotation in the era of big data - current status and future prospects, Microb. Biotechnol., 11, 588, 10.1111/1751-7915.13284 Kisand, 2013, Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools, BMC Genomics, 14, 211, 10.1186/1471-2164-14-211 Forouzan, 2017, Evaluation of nine popular de novo assemblers in microbial genome assembly, J. Microbiol. Methods, 143, 32, 10.1016/j.mimet.2017.09.008 Giani, 2020, Long walk to genomics: History and current approaches to genome sequencing and assembly, Comput. Struct. Biotechnol. J., 18, 9, 10.1016/j.csbj.2019.11.002 Sundquist, 2007, Whole-genome sequencing and assembly with high-throughput, short-read technologies, PLoS One, 2, 10.1371/journal.pone.0000484 Chitsaz, 2011, Efficient de novo assembly of single-cell bacterial genomes from short-read data sets, Nat. Biotechnol., 29, 915, 10.1038/nbt.1966 Bankevich, 2012, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 19, 455, 10.1089/cmb.2012.0021 Schmeisser, 2007, Metagenomics, biotechnology with non-culturable microbes, Appl. Microbiol. Biotechnol., 75, 955, 10.1007/s00253-007-0945-5 Teeling, 2012, Current opportunities and challenges in microbial metagenome analysis – a bioinformatic perspective, Brief. Bioinform., 13, 728, 10.1093/bib/bbs039 Sunagawa, 2015, Ocean plankton. Structure and function of the global ocean microbiome, Science, 348, 10.1126/science.1261359 Ibarbalz, 2019, Global trends in marine plankton diversity across kingdoms of life, Cell, 179, 1084, 10.1016/j.cell.2019.10.008 Schmidt, 2018, The human gut microbiome: from association to modulation, Cell, 172, 1198, 10.1016/j.cell.2018.02.044 Steinegger, 2020, Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank, Genome Biol., 21, 115, 10.1186/s13059-020-02023-1 Castelle, 2018, Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations, Nat. Rev. Microbiol., 16, 629, 10.1038/s41579-018-0076-2 Castelle, 2018, Major new microbial groups expand diversity and alter our understanding of the tree of life, Cell, 172, 1181, 10.1016/j.cell.2018.02.016 Beam, 2020, Ancestral absence of electron transport chains in Patescibacteria and DPANN, Front. Microbiol., 11, 1848, 10.3389/fmicb.2020.01848 Lopez-Garcia, 2021, Physical connections: prokaryotes parasitizing their kin, Environ. Microbiol. Rep., 13, 54, 10.1111/1758-2229.12910 Waters, 2003, The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism, Proc. Natl. Acad. Sci. U. S. A., 100, 12984, 10.1073/pnas.1735403100 Parks, 2017, Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life, Nat. Microbiol., 2, 1533, 10.1038/s41564-017-0012-7 Dombrowski, 2019, Genomic diversity, lifestyles and evolutionary origins of DPANN archaea, FEMS. Microbiol. Lett., 366, 10.1093/femsle/fnz008 Dombrowski, 2020, Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution, Nat. Commun., 11, 3939, 10.1038/s41467-020-17408-w Brown, 2015, Unusual biology across a group comprising more than 15% of domain Bacteria, Nature, 523, 208, 10.1038/nature14486 Spang, 2015, Complex archaea that bridge the gap between prokaryotes and eukaryotes, Nature, 521, 173, 10.1038/nature14447 Zaremba-Niedzwiedzka, 2017, Asgard archaea illuminate the origin of eukaryotic cellular complexity, Nature, 541, 353, 10.1038/nature21031 Eme, 2018, Archaea and the origin of eukaryotes, Nat. Rev. Microbiol., 16, 120, 10.1038/nrmicro.2017.154 Imachi, 2020, Isolation of an archaeon at the prokaryote-eukaryote interface, Nature, 577, 519, 10.1038/s41586-019-1916-6 Lopez-Garcia, 2020, Cultured Asgard Archaea shed light on eukaryogenesis, Cell, 181, 232, 10.1016/j.cell.2020.03.058 Lopez-Garcia, 2020, The Syntrophy hypothesis for the origin of eukaryotes revisited, Nat. Microbiol., 5, 655, 10.1038/s41564-020-0710-4 Doolittle, 1999, Phylogenetic classification and the universal tree, Science, 284, 2124, 10.1126/science.284.5423.2124 Doolittle, 1999, Lateral genomics, Trends Cell Biol., 9, M5, 10.1016/S0962-8924(99)01664-5 Doolittle, 2000, Uprooting the tree of life, Sci. Am., 282, 90, 10.1038/scientificamerican0200-90 Koonin, 2001, Horizontal gene transfer in prokaryotes: quantification and classification, Annu. Rev. Microbiol., 55, 709, 10.1146/annurev.micro.55.1.709 O'Malley, 2005, Paradigm change in evolutionary microbiology, Stud. Hist. Phil. Biol. Biomed. Sci., 36, 183, 10.1016/j.shpsc.2004.12.002 Bapteste, 2005, Do orthologous gene phylogenies really support tree-thinking?, BMC Evol. Biol., 5, 33, 10.1186/1471-2148-5-33 Doolittle, 2007, Pattern pluralism and the Tree of Life hypothesis, Proc. Natl. Acad. Sci. U. S. A., 104, 2043, 10.1073/pnas.0610699104 Bapteste, 2009, Prokaryotic evolution and the tree of life are two different things, Biol. Direct, 4, 34, 10.1186/1745-6150-4-34 Puigbo, 2009, Search for a Tree of Life in the thicket of the phylogenetic forest, J. Biol., 8, 59, 10.1186/jbiol159 Puigbo, 2010, The tree and net components of prokaryote evolution, Genome Biol. Evol., 2, 745, 10.1093/gbe/evq062 Puigbo, 2013, Seeing the Tree of Life behind the phylogenetic forest, BMC Biol., 11, 46, 10.1186/1741-7007-11-46 O'Malley, 2011, How stands the Tree of Life a century and a half after The Origin?, Biol. Direct, 6, 32, 10.1186/1745-6150-6-32 Medini, 2005, The microbial pan-genome, Curr. Opin. Genet. Dev., 15, 589, 10.1016/j.gde.2005.09.006 Medini, 2008, Microbiology in the post-genomic era, Nat. Rev. Microbiol., 6, 419, 10.1038/nrmicro1901 Medini, 2020, The pangenome: a data-driven discovery in biology, 3 Puigbo, 2014, Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes, BMC Biol., 12, 66, 10.1186/s12915-014-0066-4 Koonin, 2011, Are there laws of genome evolution?, PLoS Comput. Biol., 7, 10.1371/journal.pcbi.1002173 Koonin, 2008, Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world, Nucleic Acids Res., 36, 6688, 10.1093/nar/gkn668 Lobkovsky, 2013, Gene frequency distributions reject a neutral model of genome evolution, Genome Biol. Evol., 5, 233, 10.1093/gbe/evt002 Wolf, 2016, Two fundamentally different classes of microbial genes in a vast genomic universe, Nat. Microbiol., 2, 10.1038/nmicrobiol.2016.208 Andreani, 2017, Prokaryote genome fluidity is dependent on effective population size, ISME J., 11, 1719, 10.1038/ismej.2017.36 van Nimwegen, 2003, Scaling laws in the functional content of genomes, Trends Genet., 19, 479, 10.1016/S0168-9525(03)00203-8 Konstantinidis, 2004, Trends between gene content and genome size in prokaryotic species with larger genomes, Proc. Natl. Acad. Sci. U. S. A., 101, 3160, 10.1073/pnas.0308653100 Molina, 2009, Scaling laws in functional genome content across prokaryotic clades and lifestyles, Trends Genet., 25, 243, 10.1016/j.tig.2009.04.004 Sela, 2019, Selection and genome plasticity as the key factors in the evolution of bacteria, Phys. Rev. X, 9 Kristensen, 2017, ATGC database and ATGC-COGs: an updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation, Nucleic Acids Res., 45, D210, 10.1093/nar/gkw934 Lynch, 2003, The origins of genome complexity, Science, 302, 1401, 10.1126/science.1089370 Lynch, 2007, The frailty of adaptive hypotheses for the origins of organismal complexity, Proc. Natl. Acad. Sci. U. S. A., 104, 8597, 10.1073/pnas.0702207104 Lynch, 2006, Streamlining and simplification of microbial genome architecture, Annu. Rev. Microbiol., 60, 327, 10.1146/annurev.micro.60.080805.142300 Novichkov, 2009, Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes, J. Bacteriol., 191, 65, 10.1128/JB.01237-08 Kuo, 2009, The consequences of genetic drift for bacterial genome complexity, Genome Res., 19, 1450, 10.1101/gr.091785.109 Sela, 2016, Theory of prokaryotic genome evolution, Proc. Natl. Acad. Sci. U. S. A., 113, 11399, 10.1073/pnas.1614083113 Iranzo, 2017, Disentangling the effects of selection and loss bias on gene dynamics, Proc. Natl. Acad. Sci. U. S. A., 114, E616, 10.1073/pnas.1704925114 McInerney, 2017, Why prokaryotes have pangenomes, Nat. Microbiol., 2, 17040, 10.1038/nmicrobiol.2017.40 McInerney, 2020, Pangenomes and selection: the public goods hypothesis, 151 Bobay, 2018, Factors driving effective population size and pan-genome evolution in bacteria, BMC Evol. Biol., 18, 153, 10.1186/s12862-018-1272-4