Evaluation of current and projected Antarctic precipitation in CMIP5 models

Springer Science and Business Media LLC - Tập 48 - Trang 225-239 - 2016
Cyril Palerme1,2, Christophe Genthon1,2, Chantal Claud3, Jennifer E. Kay4, Norman B. Wood5, Tristan L’Ecuyer6
1CNRS, LGGE, Grenoble, France
2Université Grenoble Alpes, LGGE, Grenoble, France
3LMD/IPSL, CNRS and Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France
4Cooperative Institute for Research in Environmental Sciences, Department of Atmospheric and Oceanic Sciences, University of Colorado at Boulder, Boulder, USA
5Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, USA
6Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, USA

Tóm tắt

On average, the models in the Fifth Climate Model Intercomparison Project archive predict an increase in Antarctic precipitation from 5.5 to 24.5 % between 1986–2005 and 2080–2099, depending on greenhouse gas emissions scenarios. This translates into a moderation of future sea level rise ranging from −19 to −71 mm between 2006 and 2099. However, comparison with CloudSat and ERA-Interim data show that almost all the models overestimate current Antarctic precipitation, some by more than 100 %. If only the models that agree with CloudSat data within 20 % of error are considered, larger precipitation changes (from 7.4 to 29.3 %) and impact on sea level (from −25 to −85 mm) are predicted. A common practice of averaging all models to evaluate climate projections thus leads to a significant underestimation of the contribution of Antarctic precipitation to future sea level. Models simulate, on average, a 7.4 %/°C precipitation change with surface temperature warming. The models in better agreement with CloudSat observations for Antarctic snowfall predict, on average, larger temperature and Antarctic sea ice cover changes, which could explain the larger changes in Antarctic precipitation simulated by these models. The agreement between the models, CloudSat data and ERA-Interim is generally less in the interior of Antarctica than at the peripheries, but the interior is also where climate change will induce the smallest absolute change in precipitation. About three-quarters of the impact on sea level will result from precipitation change over the half most peripheral and lowest elevation part of the surface of Antarctica.

Tài liệu tham khảo

Agosta C, Fettweis X, Datta R (2015) Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. Cryosphere 9:2311–2321. doi:10.5194/tc-9-2311-2015 Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460. doi:10.1126/science.1114613 Arthern RJ, Winebrenner DP, Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res: Atmos. doi:10.1029/2004JD005667 Bengtsson L, Koumoutsaris S, Hodges K (2011) Large-scale surface mass balance of ice sheets from a comprehensive atmospheric model. Surv Geophys 32:459–474. doi:10.1007/s10712-011-9120-8 Bindschadler R, Choi H, Shuman C, Markus T (2005) Detecting and measuring new snow accumulation on ice sheets by satellite remote sensing. Remote Sens Environ 98:388–402. doi:10.1016/j.rse.2005.07.014 Bromwich DH (1988) Snowfall in high southern latitudes. Rev Geophys 26:149–168. doi:10.1029/RG026i001p00149 Bromwich DH, Guo Z, Bai L, Qs Chen (2004) Modeled Antarctic precipitation. part i: spatial and temporal variability. J Climate 17:427–447 Bromwich DH, Nicolas JP, Monaghan AJ (2011) An assessment of precipitation changes over Antarctica and the southern ocean since 1989 in contemporary global reanalyses. J Climate 24:4189–4209. doi:10.1175/2011JCLI4074.1 Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge and New York Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 Frezzotti M, Scarchilli C, Becagli S, Proposito M, Urbini S (2013) A synthesis of the Antarctic surface mass balance during the last 800 year. Cryosphere 7:303–319. doi:10.5194/tc-7-303-2013 Frieler K, Clark PU, He F, Buizert C, Reese R, Ligtenberg SRM, van den Broeke MR, Winkelmann R, Levermann A (2015) Consistent evidence of increasing Antarctic accumulation with warming. Nat Clim Change 5:348–352 Fujita K, Abe O (2006) Stable isotopes in daily precipitation at dome fuji, east Antarctica. Geophys Res Lett. doi:10.1029/2006GL026936 Gates WL (1992) Amip: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73(12):1962–1970 Genthon C, Krinner G, Castebrunet H (2009) Antarctic precipitation and climate change predictions: horizontal resolution and margin vs plateau issues. Ann Glaciol 50:55–60 Gorodetskaya IV, Kneifel S, Maahn M, Van Tricht K, Thiery W, Schween JH, Mangold A, Crewell S, Van Lipzig NPM (2015) Cloud and precipitation properties from ground-based remote-sensing instruments in east Antarctica. Cryosphere 9:285–304. doi:10.5194/tc-9-285-2015 Gregory J, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos Trans R Soc A: Math Phys Eng Sci 364:1709–1732. doi:10.1098/rsta.2006.1796 Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19:5686–5699. doi:10.1175/JCLI3990.1 Krinner G, Magand O, Simmonds I, Genthon C, Dufresne JL (2007) Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Climate Dyn 28:215–230. doi:10.1007/s00382-006-0177-x Krinner G, Largeron C, Mngoz M, Agosta C, Brutel-Vuilmet C (2014) Oceanic forcing of Antarctic climate change: a study using a stretched-grid atmospheric general circulation model. J Climate 27:5786–5800. doi:10.1175/JCLI-D-13-00367.1 Kumagai H, Kuroiwa H, Kobayashi S, Orikasa T (2003) Cloud profiling radar for earthcare mission. Proc SPIE 4894:118–125 Lenaerts JTM, van den Broeke MR, van de Berg WJ, van Meijgaard E, Kuipers Munneke P (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett. doi:10.1029/2011GL050713 Ligtenberg S, van de Berg W, van den Broeke M, Rae J, van Meijgaard E (2013) Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dyn 41:867–884. doi:10.1007/s00382-013-1749-1 Liu G (2008) Deriving snow cloud characteristics from cloudsat observations. J Geophys Res: Atmos. doi:10.1029/2007JD009766 Magand O, Genthon C, Fily M, Krinner G, Picard G, Frezzotti M, Ekaykin AA (2007) An up-to-date quality-controlled surface mass balance data set for the 90180e Antarctica sector and 19502005 period. J Geophys Res: Atmos. doi:10.1029/2006JD007691 Magand O, Picard G, Brucker L, Fily M, Genthon C (2008) Snow melting bias in microwave mapping of Antarctic snow accumulation. Cryosphere 2:109–115. doi:10.5194/tc-2-109-2008 Medley B, Joughin I, Das SB, Steig EJ, Conway H, Gogineni S, Criscitiello AS, McConnell JR, Smith BE, van den Broeke MR, Lenaerts JTM, Bromwich DH, Nicolas JP (2013) Airborne-radar and ice-core observations of annual snow accumulation over Thwaites glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys Res Lett 40(14):3649–3654. doi:10.1002/grl.50706 Monaghan AJ, Bromwich DH, Fogt RL, Wang SH, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006) Insignificant change in Antarctic snowfall since the international geophysical year. Science 313:827–831. doi:10.1126/science.1128243 Monaghan AJ, Bromwich DH, Schneider DP (2008) Twentieth century Antarctic air temperature and snowfall simulations by ipcc climate models. Geophys Res Lett. doi:10.1029/2007GL032630 l07502 Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 Palerme C, Kay JE, Genthon C, L’Ecuyer T, Wood NB, Claud C (2014) How much snow falls on the Antarctic ice sheet? Cryosphere 8:1577–1587. doi:10.5194/tc-8-1577-2014 Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1:106–110. doi:10.1038/ngeo102 Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Srensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189. doi:10.1126/science.1228102 Simmons A, Uppala S, Dee D, Kobayashi S (2006) Era-interim: new ecmwf re-analysis products from 1989 onwards. ECMWF Newslett 110:2535 Stephens GL, Vane DG, Tanelli S, Im E, Durden S, Rokey M, Reinke D, Partain P, Mace GG, Austin R, L’Ecuyer T, Haynes J, Lebsock M, Suzuki K, Waliser D, Wu D, Kay J, Gettelman A, Wang Z, Marchand R (2008) Cloudsat mission: Performance and early science after the first year of operation. J Geophys Res: Atmos. doi:10.1029/2008JD009982 Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294. doi:10.1002/joc.1130 Vaughan DG, Bamber JL, Giovinetto M, Russell J, Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. J Climate 12:933–946 Velicogna I (2009) Increasing rates of ice mass loss from the greenland and Antarctic ice sheets revealed by grace. Geophys Res Lett. doi:10.1029/2009GL040222 Wood NB, L’Ecuyer T, Vane DG, Stephens GL, Partain P (2013) Level 2C Snow Profile process description and interface control document, version 0. http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf. Accessed 22 Mar 2016