Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells
Tóm tắt
Poly(3,4-dihydroxy-L-phenylalanine) (polyDOPA) is a stable and biocompatible reducing agent. A versatile strategy is described here for the synthesis of core-shell Au@Ag nanostructures containing a polyDOPA interlayer. The latter provides abundant sites for deposition of nanocomposites, to immobilize molecules and to grow shells. The Au@polyDOPA@Ag nanoparticles are shown to generate strong and stable surface-enhanced Raman spectroscopy (SERS) signals compared to bare AuNPs and bare AgNPs. Folic acid was then immobilized on Au@polyDOPA@Ag nanoparticles and then applied to SERS imaging of human lung adenocarcinoma cell line A549 by the specific recognition of the folic acid receptor. The folic acid-conjugated SERS tags were promising to be nanoplatforms for imaging of cancer cells.
Tài liệu tham khảo
Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132. https://doi.org/10.1146/annurev-matsci-062910-100429
Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114(9):5057–5115. https://doi.org/10.1021/cr400407a
Krogsgaard M, Nue V, Birkedal H (2016) Mussel-inspired materials: self-healing through coordination chemistry. Chem Eur J 22(3):844–857. https://doi.org/10.1002/chem.201503380
Zhou J, Wang P, Wang C, Goh YT, Fang Z, Messersmith PB, Duan H (2015) Versatile Core–Shell nanoparticle@metal–organic framework Nanohybrids: exploiting mussel-inspired Polydopamine for tailored structural integration. ACS Nano 9(7):6951–6960. https://doi.org/10.1021/acsnano.5b01138
Yang B, Lim C, Hwang DS, Cha HJ (2016) Switch of surface adhesion to cohesion by Dopa-Fe3+ complexation, in response to microenvironment at the mussel plaque/substrate Interface. Chem Mater 28(21):7982–7989. https://doi.org/10.1021/acs.chemmater.6b03676
Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21(4):431–434. https://doi.org/10.1002/adma.200801222
Wu Q, Li S, Sun Y, Wang J (2017) Hollow gold nanoparticle-enhanced SPR based sandwich immunoassay for human cardiac troponin I. Microchim Acta 184(7):2395–2402. https://doi.org/10.1007/s00604-017-2245-9
Zhu Q, Pan Q (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation. ACS Nano 8(2):1402–1409. https://doi.org/10.1021/nn4052277
Bagheri H, Banihashemi S, Zandian FK (2016) Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Microchim Acta 183(1):195–202. https://doi.org/10.1007/s00604-015-1606-5
Wang D, Duan H, Lu J, Lu C (2017) Fabrication of thermo-responsive polymer functionalized reduced graphene oxide@Fe3O4@au magnetic nanocomposites for enhanced catalytic applications. J Mater Chem A 5(10):5088–5097. https://doi.org/10.1039/c6ta09772c
Sun C, Gao M, Zhang X (2017) Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents. Anal Bioanal Chem 409(20):4915–4926. https://doi.org/10.1007/s00216-017-0435-2
Zhong X, Yang K, Dong Z, Yi X, Wang Y, Ge C, Zhao Y, Liu Z (2015) Polydopamine as a biocompatible multifunctional Nanocarrier for combined radioisotope therapy and chemotherapy of Cancer. Adv Funct Mater 25(47):7327–7336. https://doi.org/10.1002/adfm.201503587
Xie Y, Yan B, Xu H, Chen J, Liu Q, Deng Y, Zeng H (2014) Highly regenerable mussel-inspired Fe3O4@Polydopamine-ag Core–Shell microspheres as catalyst and adsorbent for methylene blue removal. ACS APPL MATER INTER 6(11):8845–8852. https://doi.org/10.1021/am501632f
Cong Y, Xia T, Zou M, Li Z, Peng B, Guo D, Deng Z (2014) Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/ag nanocomposite particles with enhanced antibacterial activities. J Mater Chem B 2(22):3450–3461. https://doi.org/10.1039/C4TB00460D
Zeng Y, Zhang D, Wu M, Liu Y, Zhang X, Li L, Li Z, Han X, Wei X, Liu X (2014) Lipid-AuNPs@PDA Nanohybrid for MRI/CT imaging and Photothermal therapy of hepatocellular carcinoma. ACS APPL MATER INTER 6(16):14266–14277. https://doi.org/10.1021/am503583s
Hu Y, Wang D, Li G (2015) Mussel inspired redox surface for one step visual and colorimetric detection of Hg2+ during the formation of Ag@DOPA@Hg nanoparticles. Anal Methods 7(15):6103–6108. https://doi.org/10.1039/C5AY01272D
Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53(19):4756–4795. https://doi.org/10.1002/anie.201205748
Luo S, Sivashanmugan K, Liao J, Yao C, Peng H (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron 61:232–240. https://doi.org/10.1016/j.bios.2014.05.013
Alessandri I, Lombardi JR (2016) Enhanced Raman scattering with dielectrics. Chem Rev 116(24):14921–14981. https://doi.org/10.1021/acs.chemrev.6b00365
Jaworska A, Wojcik T, Malek K, Kwolek U, Kepczynski M, Ansary AA, Chlopicki S, Baranska M (2015) Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim Acta 182(1):119–127. https://doi.org/10.1007/s00604-014-1307-5
Bamrungsap S, Treetong A, Apiwat C, Wuttikhun T, Dharakul T (2016) SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods. Microchim Acta 183(1):249–256. https://doi.org/10.1007/s00604-015-1639-9
Yan W, Yang L, Zhuang H, Wu H, Zhang J (2016) Engineered “hot” core–shell nanostructures for patterned detection of chloramphenicol. Biosens Bioelectron 78:67–72. https://doi.org/10.1016/j.bios.2015.11.011
Wang W, Wang W, Liu L, Xu L, Kuang H, Zhu J, Xu C (2016) Nanoshell-enhanced Raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing. ACS APPL MATER INTER 8(24):15591–15597. https://doi.org/10.1021/acsami.6b02905
Wang Y, Yan B, Chen L (2013) SERS tags: novel optical Nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428. https://doi.org/10.1021/cr300120g
Shen W, Lin X, Jiang C, Li C, Lin H, Huang J, Wang S, Liu G, Yan X, Zhong Q, Ren B (2015) Reliable quantitative SERS analysis facilitated by Core-Shell nanoparticles with embedded internal standards. Angew Chem Int Ed 54(25):7308–7312. https://doi.org/10.1002/anie.201502171
Chen M, Luo W, Zhang Z, Zhu F, Liao S, Yang H, Chen X (2017) Sensitive surface enhanced Raman spectroscopy (SERS) detection of methotrexate by core-shell-satellite magnetic microspheres. TALANTA 171:152–158. https://doi.org/10.1016/j.talanta.2017.04.072
Zhang C, Hao R, Zhao B, Hao Y, Liu Y (2017) A ternary functional ag@GO@au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform. Appl Surf Sci 409:306–313. https://doi.org/10.1016/j.apsusc.2017.03.023
Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53(1):39–48. https://doi.org/10.1016/S0168-3659(97)00236-8
Huang Q, Liu M, Guo R, Mao L, Wan Q, Zeng G, Huang H, Deng F, Zhang X, Wei Y (2016) Facile synthesis and characterization of poly(levodopa)-modified silica nanocomposites via self-polymerization of levodopa and their adsorption behavior toward Cu2+. J Mater Sci 51(21):9625–9637. https://doi.org/10.1007/s10853-016-0178-z
Zhou J, Xiong Q, Ma J, Ren J, Messersmith PB, Chen P, Duan H (2016) Polydopamine-enabled approach toward tailored Plasmonic Nanogapped nanoparticles: from Nanogap engineering to multifunctionality. ACS Nano 10(12):11066–11075. https://doi.org/10.1021/acsnano.6b05951
Nam J, Oh J, Lee H, Suh YD (2016) Plasmonic Nanogap-enhanced Raman scattering with nanoparticles. ACCOUNTS CHEM RES 49(12):2746–2755. https://doi.org/10.1021/acs.accounts.6b00409
Marks HL, Pishko MV, Jackson GW, Coté GL (2014) Rational Design of a Bisphenol a Aptamer Selective Surface-Enhanced Raman Scattering Nanoprobe. Anal Chem 86(23):11614–11619. https://doi.org/10.1021/ac502541v
Huang C, Chen W (2018) A SERS method with attomolar sensitivity: a case study with the flavonoid catechin. Microchim Acta 185(2):120. https://doi.org/10.1007/s00604-017-2662-9
Zong C, Xu M, Xu L, Wei T, Ma X, Zheng X, Hu R, Ren B (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 118(10):4946–4980. https://doi.org/10.1021/acs.chemrev.7b00668
Shi J, Sun X, Li J, Man H, Shen J, Yu Y, Zhang H (2015) Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 37:260–270. https://doi.org/10.1016/j.biomaterials.2014.10.033