Three Steps of Neural Stem Cells Development in Gerbil Dentate Gyrus after Transient Ischemia

Journal of Cerebral Blood Flow and Metabolism - Tập 22 Số 4 - Trang 411-419 - 2002
Masanori Iwai1, Keiko Sato1, Nobuhiko Omori1, Isao Nagano1, Yasuhiro Manabe1, Mikio Shoji1, Koji Abe1
1Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan

Tóm tắt

The stage of neurogenesis can be divided into three steps: proliferation, migration, and differentiation. To elucidate detailed relations between these three steps after ischemia, the authors evaluated the three steps in the adult gerbil dentate gyrus (DG) after 5 minutes of transient global ischemia using bromodeoxyuridine (BrdU), highly polysialylated neural cell adhesion molecule (PSA-NCAM), and neuronal nuclear antigen (NeuN) and glial fibrillary acidic protein (GFAP) as markers for proliferation, migration, and differentiation, respectively. Bromodeoxyuridine-labeled cells increased approximately sevenfold, and PSA-NCAM–positive cells increased approximately threefold in the subgranular zone (SGZ) with a peak 10 days after ischemia. Bromodeoxyuridine-labeled cells with PSA-NCAM expression were first detected both in the SGZ and the granule cell layer (GCL) 20 days after ischemia and gradually decreased after that, whereas BrdU-labeled cells with NeuN gradually increased in the GCL until 60 days after ischemia. A few BrdU-labeled cells with GFAP expression were detected in DG after ischemia; no PSA-NCAM–positive cells with GFAP expression were detected, but the radial processes of glial cells were partly in contact with PSA-NCAM–positive cell bodies and dendrites. These results suggest that neural stem cell proliferation begins at the SGZ, and that the cells then migrate into the GCL and differentiate mainly into neuronal cells. The majority of these three steps finished in 2 months after transient global ischemia.

Từ khóa


Tài liệu tham khảo

10.1097/00004647-200010000-00001

10.1523/JNEUROSCI.20-08-02896.2000

10.1002/cne.901370404

10.1002/cne.901240303

10.1126/science.7079742

10.1097/00004647-200012000-00006

10.1016/0306-4522(94)90333-6

10.1523/JNEUROSCI.15-06-04687.1995

10.1016/S0306-4522(97)00303-5

10.1523/JNEUROSCI.16-08-02649.1996

10.1016/S0736-5748(99)00090-8

10.1002/1097-4547(20010215)63:4<313::AID-JNR1025>3.0.CO;2-4

10.1016/S0306-4522(01)00024-0

10.1523/JNEUROSCI.17-13-05046.1997

10.1016/0896-6273(90)90310-C

10.1016/0169-328X(94)90034-5

10.1038/3305

10.1093/jnen/60.2.132

10.1126/science.287.5457.1433

10.1002/(SICI)1097-4695(199808)36:2<249::AID-NEU11>3.0.CO;2-9

10.1046/j.1471-4159.2001.00235.x

10.1073/pnas.95.6.3168

10.1046/j.1471-4159.1998.71062339.x

10.1016/S0896-6273(00)80094-X

10.1016/S0006-8993(01)02399-X

10.1073/pnas.081011098

10.1126/science.887941

10.1007/s002210000591

10.1038/386493a0

10.1523/JNEUROSCI.17-15-05820.1997

10.1523/JNEUROSCI.18-19-07768.1998

10.1523/JNEUROSCI.20-24-09104.2000

10.1523/JNEUROSCI.16-19-06236.1996

10.1046/j.0953-816x.2001.01683.x

10.1007/BF00974869

10.1016/0896-6273(94)90028-0

10.1523/JNEUROSCI.17-10-03727.1997

10.1016/S0304-3940(98)00355-3

10.1523/JNEUROSCI.13-06-02351.1993

10.1002/(SICI)1096-9861(19990802)410:3<503::AID-CNE11>3.0.CO;2-H

10.1016/0896-6273(94)90356-5

10.1523/JNEUROSCI.09-03-00798.1989

10.1161/01.STR.32.8.1890

10.1073/pnas.101034998

10.1523/JNEUROSCI.12-08-03107.1992