Enhanced proteolytic and cellulolytic activity in insecticide-resistant strains of the maize weevil, Sitophilus zeamais
Tài liệu tham khảo
Albersheim, 1966, Pectin lyase from fungi, Methods in Enzymology, 8, 628, 10.1016/0076-6879(66)08113-8
Araújo, R.A., Guedes, R.N.C., Oliveira, M.G.A., Ferreira, G.H., 2008. Enhanced activity of carbohydrate- and lipid-metabolizing enzymes in insecticide-resistant populations of the maize weevil, Sitophilus zeamais. Bulletin of Entomological Research, in press, doi:10.1017/S0007485308005737.
Baker, 1982, Digestive proteinases of Sitophilus weevils (Coleoptera: Curculionidae) and their response to inhibitors from wheat and corn flour, Canadian Journal of Zoology, 60, 3206, 10.1139/z82-406
Beeman, 1986, Malathion resistance alleles and their fitness in the red flour beetle (Coleoptera: Tenebrionidae), Journal of Economic Entomology, 79, 580, 10.1093/jee/79.3.580
Chown, 1999, Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects, Biological Reviews, 74, 87, 10.1017/S000632319800526X
Coustau, 2000, Resistance to xenobiotics and parasites: can we count the cost?, Trends in Ecology and Evolution, 15, 378, 10.1016/S0169-5347(00)01929-7
Doostdar, 1997, Purification and characterization of an endo-polygalacturonase from gut of West Indies sugarcane rootstalk borer weevil (Diaprepes abbreviatus L.) larvae, Comparative Biochemistry and Physiology, 118B, 861, 10.1016/S0305-0491(97)00285-X
Erlanger, 1961, The preparation and properties of two new chromogenic substrates of trypsin, Archives of Biochemistry and Biophysics, 95, 271, 10.1016/0003-9861(61)90145-X
Fragoso, 2003, Biochemical mechanisms of insecticide resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), Entomologia Experimentalis et Applicata, 109, 21, 10.1046/j.1570-7458.2003.00085.x
Fragoso, 2005, Developmental rates and population growth of insecticide-resistant and susceptible populations of Sitophilus zeamais, Journal of Stored Products Research, 41, 271, 10.1016/j.jspr.2004.03.008
Fragoso, 2007, Partial characterization of glutathione S-transferases in pyrethroid-resistant and -susceptible populations of the maize weevil, Sitophilus zeamais, Journal of Stored Products Research, 43, 167, 10.1016/j.jspr.2006.04.002
Guedes, 1994, Inheritance of deltamethrin resistance in a Brazilian strain of maize weevil (Sitophilus zeamais Mots), International Journal of Pest Management, 40, 103, 10.1080/09670879409371863
Guedes, 1995, Resistance to DDT and pyrethroids in Brazilian populations of Sitophilus zeamais Motsch (Coleoptera: Curculionidae), Journal of Stored Products Research, 31, 145, 10.1016/0022-474X(94)00043-S
Guedes, 2006, Cost and mitigation of insecticide resistance in the maize weevil, Sitophilus zeamais, Physiological Entomology, 31, 30, 10.1111/j.1365-3032.2005.00479.x
Harak, 1999, Calorimetric investigations of insect metabolism and development under the influence of a toxic plant extract, Thermochimica Acta, 333, 39, 10.1016/S0040-6031(99)00093-3
Haubruge, 2001, Fitness consequences of malathion-specific resistance in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and selection for resistance in the absence of insecticide, Journal of Economic Entomology, 94, 552, 10.1603/0022-0493-94.2.552
Hostetler, 1994, Pesticide resistance and metabolic rate in German cockroach (Dictyoptera: Blatellidae), Florida Entomologist, 77, 288, 10.2307/3495517
Houseman, 1993, Difference in digestive proteolysis in the stored maize beetles—Sitophilus zeamais (Coleoptera: Curculionidae) and Prostephanus truncatus (Coleoptera: Bostrichidae), Journal of Economic Entomology, 86, 1049, 10.1093/jee/86.4.1049
Hummel, 1959, A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin, Canadian Journal of Biochemistry and Physiology, 37, 1393, 10.1139/o59-157
Kanost, 2005, Proteases, vol. 4, 247
Lee, 2004, cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari, Comparative Biochemistry and Physiology, 139B, 107, 10.1016/j.cbpc.2004.06.015
McKenzie, 1996
Miller, 1959, Use of dinitrosalicylic acid reagent for the determination of reducing sugars, Analytical Chemistry, 31, 426, 10.1021/ac60147a030
Oliveira, 2007, Competition between insecticide-susceptible and -resistant populations of the maize weevil, Sitophilus zeamais, Chemosphere, 69, 17, 10.1016/j.chemosphere.2007.04.077
Raymond, 2001, Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation?, Genetica, 112, 287, 10.1023/A:1013300108134
Reeck, 1999, Insect proteinases, 125
Ribeiro, 2003, Insecticide resistance and synergism in Brazilian populations of Sitophilus zeamais (Coleoptera: Curculionidae), Journal of Stored Products Research, 39, 21, 10.1016/S0022-474X(02)00014-0
Ribeiro, 2007, Fluctuating asymmetry in insecticide-resistant and insecticide-susceptible strains of the maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae), Archives of Environmental Contamination and Toxicology, 53, 77, 10.1007/s00244-006-0162-8
Roush, 1987, Ecological genetics of insecticide and acaricide resistance, Annual Review of Entomology, 32, 361, 10.1146/annurev.en.32.010187.002045
2002, vol. 8
Shen, 1996, Purification and characterization of polygalacturonase form the rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae), Insect Biochemistry and Molecular Biology, 26, 427, 10.1016/0965-1748(95)00098-4
2000
Terra, 2005, Biochemistry of digestion, vol. 4, 171
Tomarelli, 1949, The use of azoalbumin as a substrate in the colorimetric determination of peptic and tryptic activity, Journal of Laboratory and Clinical Medicine, 34, 428
Warburg, 1941, Isohierung und kristallisation des garungsferments enolase, Biochemische Zeitschrift, 310, 384
Wei, 2005, N-Glycosylation is necessary for enzymatic activity of a beetle (Apriona germari) cellulase, Biochemical and Biophysical Research Communications, 329, 331, 10.1016/j.bbrc.2005.01.131
Zhu-Salzman, 2003, Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor, Insect Molecular Biology, 12, 135, 10.1046/j.1365-2583.2003.00395.x