Exhumation of continental margin rocks from mantle depths to orogenic foreland: example from the Seve Nappe Complex of the central Scandinavian Caledonides

International Journal of Earth Sciences - Tập 111 - Trang 2925-2950 - 2022
Chong Ma1,2, Jarosław Majka3,4, Jeffrey A. Benowitz5, Christopher Barnes6, Håkan Sjöström3, David G. Gee3, Mark G. Steltenpohl2
1Harquail School of Earth Sciences, Laurentian University, Sudbury, Canada
2Department of Geosciences, Auburn University, Auburn, USA
3Department of Earth Sciences, Uppsala University, Uppsala, Sweden
4Geophysics and Environmental Protection, Faculty of Geology, AGH University of Science and Technology, Kraków, Poland
5Geophysical Institute, University of Alaska, Fairbanks, USA
6Institute of Geological Sciences Polish Academy of Sciences, Krakow, Poland

Tóm tắt

The diamond-bearing Seve Nappe Complex (SNC) in the Scandinavian Caledonides records subduction of continental margin rocks to (ultra)high-pressure conditions at mantle depths, and exhumation thereafter from beneath the hinterland to the Earth’s surface in the foreland. Structural data of the Upper, Middle, and Lower SNC in central Jämtland, Sweden demonstrate a triclinic bulk deformation during the exhumation of the still ductile SNC from crustal levels where migmatites formed. 40Ar/39Ar data from the Upper SNC constrain the timing of cooling through 450‒300 °C to be ~ 418 to 416 Ma. In combination with a review of the published pressure–temperature–time data and regional geology of the central Scandinavian Caledonides, four stages of exhumation of the central Jämtland SNC are summarized: (1) buoyancy-driven exhumation during ~ 455 to 433 Ma from ultrahigh-pressure depths to granulite-facies depths triggered by tectonic under-pressure; (2) tectonic exhumation in ~ 433 to 418 Ma at lower- to mid-crustal levels resulted from accretion of the Lower Köli Nappes onto Baltica; (3) eduction of the Western Gneiss Region lithosphere and piggyback transport of the SNC in ~ 418 to 375 Ma from hinterland to foreland, coupled with extensional faulting at mid- to upper-crustal levels; and (4) gravitational collapse- and erosion-driven exhumation following the end of the Scandian Orogeny at ~ 375 Ma. This multi-stage exhumation transported the SNC for > 100 km vertically from mantle depths to the Earth’s surface and > 350 km horizontally from the Caledonian hinterland to the foreland. This contribution provides a typical example of the complex exhumation of deeply subducted continental rocks in orogenic belts.

Tài liệu tham khảo

Albrecht LG (2000) Early structural and metamorphic evolution of the Scandinavian Caledonides: a study of the eclogite-bearing Seve Nappe Complex at the Arctic Circle [PhD Thesis]. Lund University, Lund, p 132 Andersen TB, Jamtveit B, Dewey JF, Swensson E (1991) Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides. Terra Nova 3:303–310 Andersen TB, Corfu F, Labrousse L, Osmundsen PT (2012) Evidence for hyperextension along the pre-Caledonian margin of Baltica. J Geol Soc 169:601–612 Andersen TB, Jakob J, Kjøll HJ, Tegner C (2022) Vestiges of the pre-caledonian passive margin of Baltica in the Scandinavian Caledonides: overview, revisions and control on the structure of the Mountain Belt. Geosciences. https://doi.org/10.3390/geosciences12020057 Andersson B (2015) Age and metamorphic conditions of the Tjeliken garnet–phengite gneiss (Swedish Caledonides). Geol Geophys Environ 41(1):55–56 Andersson A, Dahlman B, Gee DG, Sven S (1985) The Scandinavian alum shales. Avhandlingar Och Uppsatser I A4, Sveriges Geologiska Undersökning, p 50 Andréasson PG (1994) The Baltoscandian margin in neoproterozoic-early palaeozoic times Some constraints on terrane derivation and accretion in the Arctic Scandinavian Caledonides. Tectonophysics 231(1):1–32 Andréasson PG, Gee D, Sukotji S (1985) Seve eclogites in the Norrbotten Caledonides, Sweden. In: Gee DG, Sturt BA (eds) The Caledonide Orogen-Scandinavia and related areas. Wiley, Chichester, pp 887–901 Andréasson PG, Svenningsen OM, Albrecht L (1998) Dawn of Phanerozoic orogeny in the North Atlantic tract; Evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. GFF 120(2):159–172 Arnbom J-O (1980) Metamorphism of the Seve Nappes at Åreskutan, Swedish Caledonides. Geologiska Föreningen i Stockholm Förhandlingar 102(4):359–371 Augland LE, Andresen A, Corfu F (2010) Age, structural setting, and exhumation of the Liverpool Land eclogite terrane, East Greenland Caledonides. Lithosphere 2(4):267–286 Barnes C, Majka J, Schneider D, Walczak K, Bukała M, Kośmińska K, Tokarski T, Karlsson A (2019) High-spatial resolution dating of monazite and zircon reveals the timing of subduction–exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides). Contrib Mineral Petrol. https://doi.org/10.1007/s00410-018-1539-1 Be’eri-Shlevin Y, Gee D, Claesson S, Ladenberger A, Majka J, Kirkland C, Robinson P, Frei D (2011) Provenance of Neoproterozoic sediments in the Särv nappes (Middle Allochthon) of the Scandinavian Caledonides: LA-ICP-MS and SIMS U–Pb dating of detrital zircons. Precambr Res 187(1):181–200 Beckholmen M (1982) Mylonites and pseudotachylites associated with thrusting of the Köli Nappes, Tännforsfältet, central Swedish Caledonides. Geologiska Föreningen i Stockholm Förhandlingar 104(1):23–32 Beckman V, Möller C, Söderlund U, Corfu F, Pallon J, Chamberlain KR (2014) Metamorphic zircon formation at the transition from gabbro to eclogite in Trollheimen–Surnadalen, Norwegian Caledonides. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the caledonides of scandinavia and related areas. Geological Society, London, Special Publication 390, pp 403–424 Bender H, Ring U, Almqvist BSG, Grasemann B, Stephens MB (2018) Metamorphic zonation by out-of-sequence thrusting at back-stepping subduction zones: sequential accretion of the caledonian internides, Central Sweden. Tectonics. https://doi.org/10.1029/2018TC005088 Bender H, Glodny J, Ring U (2019) Absolute timing of Caledonian orogenic wedge assembly, Central Sweden, constrained by Rb–Sr multi-mineral isochron data. Lithos 344–345:339–359 Benowitz JA, Layer PW, Vanlaningham S (2014) Persistent long-term (c 24 Ma) exhumation in the Eastern Alaska Range constrained by stacked thermochronology. Geol Soc Lond Spec Publ 378(1):225–243 Bergman S (1992) P-T paths in the Handöl area, central Scandinavia: record of Caledonian accretion of outboard rocks to the Baltoscandian margin. J Metamorph Geol 10:265–281 Bergman S (1993) Geology and geochemistry of mafic-ultramafic rocks (Köli) in the Handöl area, central Scandinavian Caledonides. Nor Geol Tidsskr 73:21–42 Bergman S, Sjöström H (1997) Accretion and lateral extension in an orogenic wedge: evidence from a segment of the Seve-Köli terrane boundary, central Scandinavian Caledonides. J Struct Geol 19:1073–1091 Brueckner HK, Cuthbert SJ (2013) Extension, disruption, and translation of an orogenic wedge by exhumation of large ultrahigh-pressure terranes: examples from the Norwegian Caledonides. Lithosphere 5:277–289 Brueckner HK, Van Roermund HL (2007) Concurrent HP metamorphism on both margins of Iapetus: ordovician ages for eclogites and garnet pyroxenites from the Seve Nappe Complex, Swedish Caledonides. J Geol Soc 164:117–128 Brueckner HK, Van Roermund HL, Pearson NJ (2004) An Archean (?) to Paleozoic evolution for a garnet peridotite lens with sub-Baltic shield affinity within the Seve Nappe Complex of Jämtland, Sweden, Central Scandinavian Caledonides. J Petrol 45:415–437 Brueckner HK, Carswell DA, Griffin WL, Medaris LG, Van Roermund HLM, Cuthbert SJ (2010) The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: an isotopic investigation. Lithos 117(1):1–19 Bruton DL, Lindström M, Owen AW (1985) The ordovician of scandinavia. In: Gee DG, Sturt BA (eds) The caledonide orogen-scandinavia and related areas. Wiley, Chichester, pp 273–282 Bukała M, Klonowska I, Barnes C, Majka J, Kośmińska K, Janák M, Fassmer K, Broman C, Luptáková J (2018) UHP metamorphism recorded by phengite eclogite from the Caledonides of northern Sweden: P-T path and tectonic implications. J Metamorph Geol 36(5):547–566 Chemenda AI, Mattauer M, Malavieille J, Bokun AN (1995) A mechanism for syn-collisional rock exhumation and associated normal faulting: results from physical modelling. Earth Planet Sci Lett 132(1):225–232 Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118 Corfu F, Gasser D, Chew DM (2014) New Perspectives on the caledonides of scandinavia and related areas. Geol Soc Lond Spec Publ 390:718 Cuthbert S, Carswell D, Krogh-Ravna E, Wain A (2000) Eclogites and eclogites in the Western Gneiss region, Norwegian Caledonides. Lithos 52(1–4):165–195 Dallmeyer R (1990) 40Ar/39Ar mineral age record of a polyorogenic evolution within the Seve and Köli nappes, Trøndelag, Norway. Tectonophysics 179:199–226 Dallmeyer RD, Gee DG, Beckholmen M (1985) 40Ar/39Ar mineral age record of early Caledonian tectonothermal activity in the Baltoscandian Miogeocline, central Scandinavia. Am J Sci 285:532–568 Dazé A, Lee JK, Villeneuve M (2003) An intercalibration study of the Fish Canyon sanidine and biotite 40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff. Chem Geol 199:111–127 Di Vincenzo G, Carosi R, Palmeri R (2004) The relationship between tectono-metamorphic evolution and argon isotope records in white mica: constraints from in situ 40Ar/39Ar laser analysis of the Variscan basement of Sardinia. J Petrol 45(5):1013–1043 Dyrelius D (1985) A geophysical perspective of the Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide orogen-scandinavia and related areas. Wiley, Chichester, pp 185–195 Essex R, Gromet L, Andréasson PG, Albrecht L (1997) Early Ordovician U–Pb metamorphic ages of the eclogite-bearing Seve nappes, Northern Scandinavian Caledonides. J Metamorph Geol 15:665–676 Fassmer K, Andersson B, Klonowska I, Walczak K, Froitzheim N, Majka J, Fonseca R (2017) Middle Ordovician subduction of continental crust in the Scandinavian Caledonides-an example from Tjeliken, Seve Nappe Complex, Sweden. Geophys Res Abstr 19:1460 Fossen H (2010) Extensional tectonics in the North Atlantic Caledonides: a regional view. Geol Soc Lond Spec Publ 335(1):767–793 Fossen H, Dunlap WJ (1998) Timing and kinematics of Caledonian thrusting and extensional collapse, southern Norway: evidence from 40Ar/39Ar thermochronology. J Struct Geol 20(6):765–781 Foster DA, Grice WC, Kalakay TJ (2010) Extension of the Anaconda metamorphic core complex: 40Ar/39Ar thermochronology and implications for Eocene tectonics of the northern Rocky Mountains and the Boulder batholith. Lithosphere 2:232–246 Gee DG (1975) A tectonic model for the central part of the Scandinavian Caledonides. Am J Sci 275:468–515 Gee DG (1978) Nappe displacement in the Scandinavian Caledonides. Tectonophysics 47:393–419 Gee DG (2015) Caledonides of Scandinavia, Greenland, and Svalbard, reference module in earth systems and environmental sciences. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409548-909133-8, pp 1–15 Gee DG, Sturt BA (1985) The Caledonide orogen-Scandinavia and related areas. Wiley, Chichester, p 1266 Gee DG, Kumpulainen R, Roberts D, Stephens MB, Thon A, Zachrisson E (1985) Scandinavian Caledonides tectonostratigraphic map. Sveriges Geologiska Undersökning, scale 1:2,000,000 Gee DG, Fossen H, Henriksen N, Higgins AK (2008) From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes 31(1):44–51 Gee DG, Juhlin C, Pascal C, Robinson P (2010) Collisional orogeny in the Scandinavian Caledonides (COSC). GFF 132:29–44 Gee DG, Janák M, Majka J, Robinson P, van Roermund H (2013) Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica-Laurentia collision. Lithosphere 5:169–178 Gee DG, Ladenberger A, Dahlqvist P, Majka J, Be'eri-Shlevin Y, Frei D, Thomsen T (2014) The Baltoscandian margin detrital zircon signatures of the central Scandes. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the caledonides of scandinavia and related areas. Geological Society, London, Special Publication 390, pp 131–155 Gee DG, Andréasson PG, Li Y, Krill A (2017) Baltoscandian margin, Sveconorwegian crust lost by subduction during Caledonian collisional orogeny. GFF 139(1):36–51 Gee DG, Klonowska I, Andréasson, P-G, Stephens MB (2020) Chapter 21: Middle thrust sheets in the Caledonide orogen, Sweden: The outer margin of Baltica, the continent–ocean transition zone and late Cambrian–Ordovician subduction–accretion. In: Stephens MB, Bergman Weihed J (eds) Sweden: lithotectonic framework, tectonic evolution and mineral resources. Geological Society, London, Memoirs 50, p 517–548 https://doi.org/10.1144/M50-2018-73 Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics. https://doi.org/10.1029/2002TC001406 Gilio M, Clos F, van Roermund HLM (2015) The Friningen Garnet Peridotite (central Swedish Caledonides) A good example of the characteristic PTt path of a cold mantle wedge garnet peridotite. Lithos 230:1–16 Gilotti JA, Jones KA, Elvevold S (2008) Caledonian metamorphic patterns in Greenland. In: Higgins AK, Gilotti JA, Smith MP (eds) The Greenland Caledonides: evolution of the northeast margin of Laurentia. Geological Society of America Memoir 202, pp 201–225 Gilotti JA, Kumpulainen R (1986) Strain softening induced ductile flow in the Särv thrust sheet, Scandinavian Caledonides. J Struct Geol 8(3):441–455 Giuntoli F, Menegon L, Warren CJ (2018) Replacement reactions and deformation by dissolution and precipitation processes in amphibolites. J Metamorph Geol 36(9):1263–1286 Giuntoli F, Menegon L, Warren CJ, Darling J, Anderson MW (2020) Protracted shearing at midcrustal conditions during large-scale thrusting in the Scandinavian Caledonides. Tectonics 39(9):e2020TC006267 Glodny J, Hierold J, Harms U (2017) Direct dating of ductile deformation within the Caledonian nappe stack: Rb-Sr mineral data and element mapping from the COSC-1 drill core. Geophys Res Abstr 19:6365 Gorbatschev R (1985) Precambrian basement of the Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide Orogen-Scandinavia and related areas. Wiley, Chichester, pp 197–212 Grimmer JC, Glodny J, Drüppel K, Greiling RO, Kontny A (2015) Early- to mid-Silurian extrusion wedge tectonics in the central Scandinavian Caledonides. Geology 43(4):347–350 Gromet LP, Sjöström H, Bergman S, Claesson S, Essex RM, Andréasson PG, Albrecht L (1996) Contrasting ages of metamorphism in the Seve nappes: U–Pb results from the central and northern Swedish Caledonides. GFF 118:36–37 Guillot S, Hattori K, Agard P, Schwartz S, Vidal O (2009) Exhumation processes in oceanic and continental subduction contexts: a review. In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 175–205 Hacker BR, Gans PB (2005) Continental collisions and the creation of ultrahigh-pressure terranes: Petrology and thermochronology of nappes in the central Scandinavian Caledonides. Geol Soc Am Bull 117:117–134 Hacker BR, Gerya TV (2013) Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics 603:79–88 Hacker BR, Andersen TB, Johnston S, Kylander-Clark AR, Peterman EM, Walsh EO, Young D (2010) High-temperature deformation during continental-margin subduction & exhumation: the ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics 480:149–171 Harper DAT, Bruton DL, Rasmussen CMØ (2008) The Otta brachiopod and trilobite fauna: palaeogeography of Early Palaeozoic terranes and biotas across Baltoscandia. Fossils Strata 54:31–40 Jakob J, Andersen TB, Kjøll HJ (2019) A review and reinterpretation of the architecture of the south and south-central Scandinavian Caledonides—a magma-poor to magma-rich transition and the significance of the reactivation of rift inherited structures. Earth Sci Rev 192:513–528 Janák M, van Roermund H, Majka J, Gee D (2013) UHP metamorphism recorded by kyanite-bearing eclogite in the Seve Nappe Complex of northern Jämtland, Swedish Caledonides. Gondwana Res 23:865–879 Janák M, Ravna E, Majka J, Klonowska I, Kullerud K, Gee D, Froitzheim N (2017) Recent progress in recognition of UHP metamorphism in allochthons of the Scandinavian Caledonides (Seve Nappe Complex and Tromsø Nappe). Geophys Res Abstr 19:5161 Jiang D, Williams PF (1998) High-strain zones: a unified model. J Struct Geol 20(8):1105–1120 Karis L, Strömberg A (1998) Jämtlands Östliga Fjällberggrund: Beskrivning till Berggrundskartan över Jämtlands län: Del 2 Fjälldelen. Sveriges Geologiska Undersökning, Ser C 53(2):1–363 Kirkland C, Bingen B, Whitehouse M, Beyer E, Griffin W (2011) Neoproterozoic palaeogeography in the North Atlantic Region: inferences from the Akkajaure and Seve Nappes of the Scandinavian Caledonides. Precambr Res 186:127–146 Kjøll HJ, Andersen TB, Corfu F, Labrousse L, Tegner C, Abdelmalak MM, Planke S (2019) Timing of breakup and thermal evolution of a pre-Caledonian Neoproterozoic exhumed magma-rich rifted margin. Tectonics 38:1843–1862 Klonowska I, Majka J, Janák M, Gee DG, Ladenberger A (2014) Pressure–temperature evolution of a kyanite–garnet pelitic gneiss from Åreskutan: evidence of ultra-high-pressure metamorphism of the Seve Nappe Complex, west-central Jämtland, Swedish Caledonides. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the caledonides of scandinavia and related areas. Geological Society, London, Special Publication 390, pp 321–336 Klonowska I, Janák M, Majka J, Froitzheim N, Kośmińska K (2016) Eclogite and garnet pyroxenite from Stor Jougdan, Seve Nappe Complex, Sweden: implications for UHP metamorphism of allochthons in the Scandinavian Caledonides. J Metamorph Geol 34:p103-119 Klonowska I, Janák M, Majka J, Petrík I, Froitzheim N, Gee D, Sasinková V (2017) Microdiamond on Åreskutan confirms regional UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. J Metamorph Geol 35:541–564 Krogh TE, Kamo SL, Robinson P, Terry MP, Kwok K (2011) U–Pb zircon geochronology of eclogites from the Scandian Orogen, northern Western Gneiss Region, Norway: 14–20 million years between eclogite crystallization and return to amphibolite-facies conditions. Can J Earth Sci 48(2):441–472 Kuiper K, Deino A, Hilgen F, Krijgsman W, Renne P, Wijbrans J (2008) Synchronizing rock clocks of Earth history. Science 320(5875):500–504 Kulling O (1933) Bergbyggnaden inom Bjӧrkvattnet-Virisenområdet i Vӓsterbottensfjӓllens centrala del. Geologiska Fӧreningens i Stockholm Fӧrhandlingar 55:167–422 Kumpulainen R (1980) Upper Proterozoic stratigraphy and depositional environments of the Tossåsfjället Group, Särv Nappe, southern Swedish Caledonides. Geologiska Föreningen i Stockholm Förhandlingar 102(4):531–550 Kylander-Clark AR, Hacker BR, Johnson CM, Beard BL, Mahlen NJ, Lapen TJ (2007) Coupled Lu–Hf and Sm–Nd geochronology constrains prograde and exhumation histories of high- and ultrahigh-pressure eclogites from western Norway. Chem Geol 242(1):137–154 Kylander-Clark AR, Hacker BR, Mattinson JM (2008) Slow exhumation of UHP terranes: titanite and rutile ages of the Western Gneiss Region, Norway. Earth Planet Sci Lett 272:531–540 Kylander-Clark AR, Hacker BR, Johnson CM, Beard BL, Mahlen NJ (2009) Slow subduction of a thick ultrahigh-pressure terrane. Tectonics 28(2):TC2003. https://doi.org/10.1029/2007TC002251 Ladenberger A, Be'eri-Shlevin Y, Claesson S, Gee D G, Majka J, Romanova IV (2014) Tectonometamorphic evolution of the Åreskutan Nappe–Caledonian history revealed by SIMS U–Pb zircon geochronology. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the Caledonides of Scandinavia and related areas. Geological Society, London, Special Publication 390, pp 337–368 Li B, Massonne HJ, Zhang J (2020) Evolution of a gneiss in the Seve nappe complex of central Sweden-Hints at an early Caledonian, medium-pressure metamorphism. Lithos 376:105746 Lin S, Jiang D, Williams PF (1998) Transpression (or transtension) zones of triclinic symmetry: natural example and theoretical modelling. Geol Soc Lond Spec Publ 135(1):41–57 Lin S, Jiang D, Williams PF (2007) Importance of differentiating ductile slickenside striations from stretching lineations and variation of shear direction across a high-strain zone. J Struct Geol 29(5):850–862 Lorenz H, Rosberg J-E, Juhlin C, Bjelm L, Almqvist BSG, Berthet T, Conze R, Gee DG, Klonowska I, Pascal C (2015) COSC-1-drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia. Sci Drill 19:1–11 Ma C, Foster DA, Hames WE, Mueller PA, Steltenpohl MG (2019) From the Alleghanian to the Atlantic: extensional collapse of the southernmost Appalachian orogen. Geology 47(4):367–370 Ma C, Hames WE, Foster DA, Xiao W, Mueller PA, Steltenpohl MG (in press) Transformation of eastern North America from compression to extension in the Permian-Triassic. In: Whitmeyer SJ, Williams ML, Kellett DA, Tikoff B (eds) Laurentia: turning points in the evolution of a continent. Geological Society of America Memoir 220 Majka J, Be’eri-Shlevin Y, Gee DG, Ladenberger A, Claesson S, Konecny P, Klonowska I (2012) Multiple monazite growth in the Åreskutan migmatite: evidence for a polymetamorphic Late Ordovician to Late Silurian evolution in the Seve Nappe Complex of west-central Jamtland, Sweden. J Geosci 57(1):3–23 Majka J, Janák M, Andersson B, Klonowska I, Gee DG, Rosén Å, Kośmińska K (2014a) Pressure–temperature estimates on the Tjeliken eclogite: new insights into the (ultra)-high-pressure evolution of the Seve Nappe Complex in the Scandinavian Caledonides. In: Corfu F, Gasser D, Chew DM (eds) New perspectives on the caledonides of scandinavia and related areas. Geological Society, London, Special Publication 390, pp 369–384 Majka J, Rosén Å, Janák M, Froitzheim N, Klonowska I, Manecki M, Sasinková V, Yoshida K (2014b) Microdiamond discovered in the Seve Nappe (Scandinavian Caledonides) and its exhumation by the “vacuum-cleaner” mechanism. Geology 42(12):1107–1110 McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford, Oxford University Press, New York, p 269 Nilsson LP, Roberts D, Ramsay DM (2005) The Raudfjellet ophiolite fragment, Central Norwegian Caledonides: principal lithological and structural features. Norges Geologiske Undersøkelse Bull 445:101–117 Nystuen JP, Andresen A, Kumpulainen RA, Siedlecka A (2008) Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard. Episodes 31:35–43 Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin, p 366 Renne PR, Deino AL, Walter RC, Turrin BD, Swisher CC III, Becker TA, Curtis GH, Sharp WD, Jaouni AR (1994) Intercalibration of astronomical and radioisotopic time. Geology 22(9):783–786 Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74(18):5349–5367 Ring U, Glodny J (2010) No need for lithospheric extension for exhuming (U)HP rocks by normal faulting. J Geol Soc 167(2):225–228 Ring U, Will T, Glodny J, Kumerics C, Gessner K, Thomson S, Güngör T, Monié P, Okrusch M, Drüppel K (2007) Early exhumation of high-pressure rocks in extrusion wedges: Cycladic blueschist unit in the eastern Aegean, Greece, and Turkey. Tectonics. https://doi.org/10.1029/2005TC001872 Roberts D, Nordgulen Ø, Melezhik V (2007) The Uppermost Allochthon in the Scandinavian Caledonides: from a Laurentian ancestry through Taconian orogeny to Scandian crustal growth on Baltica. In: Hatcher RD, Carlson MP, McBride JH, Catalán JRM (eds) 4-D Framework of continental crust. Geological Society of America Memoir 200, pp 357–377 Root D, Corfu F (2012) U–Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the Seve Nappe Complex, Scandinavian Caledonides. Contrib Miner Petrol 163(5):769–788 Röshoff K (1978) Structures of the Tännäs Augen Gneiss Nappe and its relation to under- and overlying units in the central Scandinavian Caledonides. Sveriges Geologiska Undersökning C 739:1–35 Samson SD, Alexander EC (1987) Calibration of the interlaboratory 40Ar/39Ar dating standard MMhb-1. Chem Geol 66(1–2):27–34 Seranne M (1992) Late Paleozoic kinematics of the Møre-Trøndelag Fault Zone and adjacent areas, central Norway. Norsk Geologisk Tidsskriftv 72:141–158 Sjöstrand T (1999) Bedrock map 19C Storlien SO. Sveriges geologiska undersökning Ai 109, scale 1:50 000, 1 sheet Sjöström H (1984) The Seve-Köli Nappe Complex of the Handöl-Storlien-Essandsjøen area, Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar 105(2):93–118 Sjöström H, Talbot C, Bergman S (1996) The development of antiformal windows in the central Scandinavian Caledonides: antiformal stacks modified by extensional detachments. GFF 118(S4):40–40. https://doi.org/10.1080/11035899609546313 Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310(5979):641–644 Sobolev N, Shatsky V (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343(6260):742 Solli A, Nordgulen Ø (2008) Bedrock map of Norway and the Caledonides in Sweden and Finland. Geological Survey Norway, scale: 1: 2,000,000, 1 sheet Spell TL, McDougall I (2003) Characterization and calibration of 40Ar/39Ar dating standards. Chem Geol 198(3–4):189–211 Spencer KJ, Hacker BR, Kylander-Clark AR, Andersen TB, Cottle JM, Stearns MA, Poletti JE, Seward GG (2013) Campaign-style titanite U–Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure. Chem Geol 341:84–101 Spengler D, Brueckner HK, van Roermund HL, Drury MR, Mason PR (2009) Long-lived, cold burial of Baltica to 200 km depth. Earth Planet Sci Lett 281(1–2):27–35 Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36(3):359–362 Stephens MB, Van Roermund HL (1984) Occurrence of glaucophane and crossite in eclogites of the Seve Nappes, southern Norrbotten Caledonides, Sweden. Norweg J Geol 61:155–163 Strömberg AG (1961) On the tectonics of the Caledonides in the south-western part of the county of Jämtland, Sweden. Bull Geol Inst Univ Uppsala 39:1–92 Sturt BA, Ramsay DM, Neuman RB (1991) The Otta Conglomerate, the Vågåmo Ophiolite−further indications of early Ordovician Orogenesis in the Scandinavian Caledonides. Norsk Geologisk Tidsskrif 71:107–115 Svenningsen OM (2001) Onset of seafloor spreading in the Iapetus Ocean at 608 Ma: precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambr Res 110(1):241–254 Thompson AB, Schulmann K, Jezek J (1997) Extrusion tectonics and elevation of lower crustal metamorphic rocks in convergent orogens. Geology 25(6):491–494 Törnebohm A (1888) Om fjällproblemet. Geologiska Föreningen i Stockholm Förhandlingar 10(5):328–336 Tucker RD, Robinson P, Solli A, Gee DG, Thorsnes T, Krogh TE, Nordgulen Ø, Bickford M (2004) Thrusting and extension in the Scandian hinterland, Norway: new U–Pb ages and tectonostratigraphic evidence. Am J Sci 304(6):477–532 Van Roermund H (1985) Eclogites of the Seve nappe, central Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide Orogen-Scandinavia and related areas. Wiley, Chichester, pp 873–886 Van Roermund H (1989) High-pressure ultramafic rocks from the allochthonous nappes of the Swedish Caledonides. In: Gayer RA (ed) The Caledonide geology of scandinavia. Graham & Trotman, London, pp 205–219 Villa I (1998) Isotopic closure. Terra Nova 10:42–47 Walczak K, Majka J, Klonowska I, Barnes C (2019) Two distinct high grade metamorphic events at c 500 Ma and 450 Ma recorded in zircon from the Snasahögarna diamond-bearing gneiss, Scandinavian Caledonides. Geophys Res Abstr 21:6945 Walczak K, Barnes CJ, Majka J, Gee DG, Klonowska I (2022) Zircon age depth-profiling sheds light on the early Caledonian evolution of the Seve Nappe Complex in west-central Jämtland. Geosci Front 13(2):101112. https://doi.org/10.1016/j.gsf.2020.11.009 Walsh EO, Hacker BR, Gans PB, Wong MS, Andersen TB (2013) Crustal exhumation of the Western Gneiss Region UHP terrane, Norway: 40Ar/39Ar thermochronology and fault-slip analysis. Tectonophysics 608:1159–1179 Warren C (2013) Exhumation of (ultra-) high-pressure terranes: concepts and mechanisms. Solid Earth 4(1):75–92 Yamato P, Burov E, Agard P, Le Pourhiet L, Jolivet L (2008) HP-UHP exhumation during slow continental subduction: Self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth Planet Sci Lett 271(1–4):63–74 York D, Hall CM, Yanase Y, Hanes JA, Kenyon WJ (1981) 40Ar/39Ar dating of terrestrial minerals with a continuous laser. Geophys Res Lett 8(11):1136–1138 Young DJ (2017) Structure of the (ultra) high-pressure Western Gneiss Region, Norway: Imbrication during Caledonian continental margin subduction. Geol Soc Am Bull 130(5–6):926–940 Young DJ, Hacker BR, Andersen TB, Corfu F (2007) Prograde amphibolite facies to ultrahigh-pressure transition along Nordfjord, western Norway: Implications for exhumation tectonics. Tectonics 26(1):TC1007. https://doi.org/10.1029/2004TC001781 Zachrisson E (1973) The westerly extension of Seve rocks within the Seve-Köli Nappe Complex in the Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar 95(2):243–251