Systematically assessing genetic strategies for engineering electroactive bacterium to promote bioelectrochemical performances and pollutant removal

Sustainable Energy Technologies and Assessments - Tập 47 - Trang 101506 - 2021
Feng-He Li1, Di Min1, Zhou-Hua Cheng2, Jie Li1, Jing-Hang Wu1, Qiang Tang1, Han-Qing Yu1
1CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
2School of Life Sciences, University of Science and Technology of China, Hefei 230026, China

Tài liệu tham khảo

Gul, 2019, Bioelectrochemical systems: Sustainable bio-energy powerhouses, Biosens Bioelectron, 142, 111576, 10.1016/j.bios.2019.111576 Su, 2019, Reaching full potential: bioelectrochemical systems for storing renewable energy in chemical bonds, Curr Opin Biotechnol, 57, 66, 10.1016/j.copbio.2019.01.018 Schröder, 2015, Microbial electrochemistry and technology: terminology and classification, Energy Environ Sci, 8, 513, 10.1039/C4EE03359K Logan, 2012, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science, 337, 686, 10.1126/science.1217412 Lu, 2018, Wastewater treatment for carbon capture and utilization, Nat Sustain, 1, 750, 10.1038/s41893-018-0187-9 Aryal N, Ammam F, Patil SA, Pant D: An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem 2017; 19:5748-5760. https:// doi.org/10.1039/c7gc01801k. Santoro, 2017, Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content, Appl Energy, 208, 25, 10.1016/j.apenergy.2017.10.056 Logan, 2019, Electroactive microorganisms in bioelectrochemical systems, Nat Rev Microbiol, 17, 307, 10.1038/s41579-019-0173-x Yan, 2016, Enrofloxacin Transformation on Shewanella oneidensis MR-1 Reduced Goethite during Anaerobic-Aerobic Transition, Environ Sci Technol, 50, 11034, 10.1021/acs.est.6b03054 Zhou, 2018, Electron shuttles enhance the degradation of sulfamethoxazole coupled with Fe(III) reduction by Shewanella oneidensis MR-1, Environ Toxicol Pharmacol, 62, 156, 10.1016/j.etap.2018.07.006 Li, 2018, Cloning, Expression, and Biochemical Characterization of Two New Oligoalginate Lyases with Synergistic Degradation Capability, Mar Biotechnol, 20, 75, 10.1007/s10126-017-9788-y Zhao, 2019, Goethite Hinders Azo Dye Bioreduction by Blocking Terminal Reductive Sites on the Outer Membrane of Shewanella decolorationis S12, Front Microbiol, 10, 1452, 10.3389/fmicb.2019.01452 Xie, 2017, Effects of humic acid concentration on the microbially-mediated reductive solubilization of Pu(IV) polymers, J Hazard Mater, 339, 347, 10.1016/j.jhazmat.2017.06.054 Methe, 2003, Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments, Science, 302, 1967, 10.1126/science.1088727 Anderson, 2003, Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer, Appl Environ Microb, 69, 5884, 10.1128/AEM.69.10.5884-5891.2003 Pinchuk, 2009, Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization, Proc Natl Acad Sci U S A, 106, 2874, 10.1073/pnas.0806798106 Lovley, 2003, Cleaning up with genomics: applying molecular biology to bioremediation, Nat Rev Microbiol, 1, 35, 10.1038/nrmicro731 Selim, 2017, Bioelectrochemical Systems for Measuring Microbial Cellular Functions, Electroanalysis, 29, 1498, 10.1002/elan.201700110 Peng, 2010, Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis, Biosens Bioelectron, 25, 1248, 10.1016/j.bios.2009.10.002 Yong, 2014, Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm, Angew Chem Int Ed Engl, 53, 4480, 10.1002/anie.201400463 Yuan, 2019, Significant enhancement of electron transfer from Shewanella oneidensis using a porous N-doped carbon cloth in a bioelectrochemical system, Sci Total Environ, 665, 882, 10.1016/j.scitotenv.2019.02.082 Mollaei M, Timmers PHA, Suarez-Diez M, Boeren S, van Gelder AH, Stams AJM, et al. Comparative proteomics of Geobacter sulfurreducens PCAT in response to acetate, formate and/or hydrogen as electron donor. Environ Microbiol. 2021;23(1):299-315. https://doi: 10.1111/1462-2920.15311. Chiranjeevi P, Patil SA. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol Adv. 2020;39:107468. https://doi: 10.1016/j.biotechadv.2019.107468. Seviour TW, Hinks J. Bucking the current trend in bioelectrochemical systems: a case for bioelectroanalytics. Crit Rev Biotechnol. 2018;38(4):634-646. https://doi: 10.1080/07388551.2017.1380599. Marsili, 2008, Shewanella Secretes flavins that mediate extracellular electron transfer, Proc Natl Acad Sci U S A, 105, 3968, 10.1073/pnas.0710525105 Kato, 2012, Microbial interspecies electron transfer via electric currents through conductive minerals, Proc Natl Acad Sci U S A, 109, 10042, 10.1073/pnas.1117592109 Michelson, 2019, Diffusion-Based Recycling of Flavins Allows Shewanella oneidensis MR-1 To Yield Energy from Metal Reduction Across Physical Separations, Environ Sci Technol, 53, 3480, 10.1021/acs.est.8b04718 Kasai T, Kouzuma A, Nojiri H, Watanabe K. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC Microbiol 2015;15:68-68. https://doi.org/10.1186/s12866-015-0406-8. Heidelberg, 2002, Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis, Nat Biotechnol, 20, 1118, 10.1038/nbt749 Kasai T, Tomioka Y, Kouzuma A, Watanabe K. Overexpression of the adenylate cyclase gene cyaC facilitates current generation by Shewanella oneidensis in bioelectrochemical systems. Bioelectrochemistry. 2019;129:100-105. https://doi: 10.1016/j.bioelechem.2019.05.010. Meyer TE, Tsapin AI, Vandenberghe I, de Smet L, Frishman D, Nealson KH, et al. Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. OMICS. 2004;8(1):57-77. https://doi: 10.1089/153623104773547499. eliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM, et al. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol. 2005;187(20):7138-45. https://doi: 10.1128/JB.187.20.7138-7145.2005. Thomas P, Terradot G, Danos V, Weiße AY. Sources, propagation and consequences of stochasticity in cellular growth. Nat Commun. 2018;9(1):4528. https://doi: 10.1038/s41467-018-06912-9. Gardner, 2000, Construction of a genetic toggle switch in Escherichia coli, Nature, 403, 339, 10.1038/35002131 Elowitz, 2000, A synthetic oscillatory network of transcriptional regulators, Nature, 403, 335, 10.1038/35002125 Slusarczyk, 2012, Foundations for the design and implementation of synthetic genetic circuits, Nat Rev Genet, 13, 406, 10.1038/nrg3227 Cheng L, Min D, He RL, Cheng ZH, Liu DF, Yu HQ. Developing a base-editing system to expand the carbon source utilization spectra of Shewanella oneidensis MR-1 for enhanced pollutant degradation. Biotechnol Bioeng. 2020;117(8):2389-2400. https://doi: 10.1002/bit.27368. Li F, Li Y, Sun L, Chen X, An X, Yin C, et al. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1. ACS Synth Biol. 2018;7(3):885-895. https://doi: 10.1021/acssynbio.7b00390. Li F, Li YX, Cao YX, Wang L, Liu CG, Shi L, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat Commun. 2018 ;9(1):3637. https://doi: 10.1038/s41467-018-05995-8. Liu, 2015, Enhanced Shewanella biofilm promotes bioelectricity generation, Biotechnol Bioeng., 112, 2051, 10.1002/bit.25624 Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat Methods, 6, 343, 10.1038/nmeth.1318 Grote, 2005, JCat: a novel tool to adapt codon usage of a target gene to its potential expression host, Nucleic Acids Res., 33, W526, 10.1093/nar/gki376 Cai, 2012, Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1, Appl Microbiol Biotechnol, 93, 1769, 10.1007/s00253-011-3508-8 Oliveira, 2013, Proposition of a simple method for chromium (VI) determination in soils from remote places applying digital images: A case study from Brazilian Antarctic Station, Microchem J, 109, 165, 10.1016/j.microc.2012.03.007 Yan, 2016, The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review), Mol Med Rep, 13, 3715, 10.3892/mmr.2016.5005 Ryu, 2010, Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications, J Biol Chem, 285, 41501, 10.1074/jbc.M110.177600 Metzl-Raz E, Kafri M, Yaakov G, Soifer I, Gurvich Y, Barkai N. Principles of cellular resource allocation revealed by condition-dependent proteome profiling. Elife. 2017;6:e28034. https://doi: 10.7554/eLife.28034. Basan M. Resource allocation and metabolism: the search for governing principles. Curr Opin Microbiol. 2018;45:77-83. https://doi: 10.1016/j.mib.2018.02.008. Adekunle A, Raghavan V, Tartakovsky B. A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring. Bioelectrochemistry. 2019;126:105-112. https://doi: 10.1016/j.bioelechem.2018.11.007. Zhao J, Li F, Cao Y, Zhang X, Chen T, Song H, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv. 2020:107682. https://doi: 10.1016/j.biotechadv.2020.107682. Leung, 2021, Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review, Appl Biochem Biotechnol., 193, 1170, 10.1007/s12010-020-03469-6 Li, 2019, Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology, Bioresour Technol, 277, 157, 10.1016/j.biortech.2019.01.002 Chemiefaser I. Worldwide production volume of chemical and textile fibers from 1975 to 2018. Statista Inc. Edited by 2018. Liu, 2017, Exclusive Extracellular Bioreduction of Methyl Orange by Azo Reductase-Free Geobacter sulfurreducens, Environ Sci Technol, 51, 8616, 10.1021/acs.est.7b02122 Cai, 2019, Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant, Ecotoxicol Environ Saf, 181, 472, 10.1016/j.ecoenv.2019.06.036 Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway. ACS Synth Biol. 2015;4(7):815-23. https://doi: 10.1021/sb500331x. Kouzuma A, Kasai T, Hirose A, Watanabe K. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front Microbiol. 2015;6:609. https://doi: 10.3389/fmicb.2015.00609. Urgun-Demirtas M, Stark B, Pagilla K. Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Crit Rev Biotechnol. 2006;26(3):145-64. https://doi: 10.1080/07388550600842794. Lee JW, Chan CTY, Slomovic S, Collins JJ. Next-generation biocontainment systems for engineered organisms. Nat Chem Biol. 2018;14(6):530-537. https://doi: 10.1038/s41589-018-0056-x.