Existence and Multiplicity Results for Kirchhoff Problems

Mediterranean Journal of Mathematics - Tập 14 - Trang 1-14 - 2017
Anmin Mao1, Xincai Zhu2
1School of Mathematical Sciences, Qufu Normal University, Qufu, People’s Republic of China
2Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People’s Republic of China

Tóm tắt

We consider the following superlinear Kirchhoff problem: $$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b\int _{\Omega }|\nabla u|^{2}\right) \triangle u=f(x,u)&{}\quad \hbox {in}\ \ \Omega ,\ \\ u=0&{}\quad \hbox {on}\ \partial \Omega , \end{array} \right. \end{aligned}$$ where $$\Omega $$ is a smooth bounded domain in $${\mathbb {R}}^{3}$$ , and $$a,b>0$$ . Inspired by an anti-example, we find a new superlinear growth condition which unifies the known Ambrosetti–Rabinowitz type conditions and get the existence and multiplicity of nontrivial solutions. We also prove the existence of positive solution, negative solution and sign-changing solution to the problem without any symmetry. Our argument depends on the newly established condition and the method of critical point theory in the setting of invariant sets of the descending flows. We improve and extend some recent results in the literature.

Tài liệu tham khảo

Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883) Bernstein, S.: Sur une classe d’équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS. Ser. Math. [Izvestia Akad. Nauk SSSR] 4, 17–26 (1940) Pohoz̆ev, S.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (NS) 96, 152–166 (1975) Lions, J.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proceedings of International symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977. North-Holland Mathematics Studies, vol. 30, pp. 284–346. North-Holland, Amsterdam (1978) Alves, C., Corrêa, F., Ma, T.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005) Chen, C., Kuo, Y., Wu, T.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011) Sun, J., Tang, C.: Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Anal. 74, 1212–1222 (2011) Yang, Y., Zhang, J.: Nontrivial solutions of a class of nonlocal problems via local linking theory. Appl. Math. Lett. 23, 377–380 (2010) Sun, J., Liu, S.: Nontrivial solution of Kirchhoff type problems. Appl. Math. Lett. 25, 500–504 (2012) Cheng, B., Wu, X.: Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal. 71, 4883–4892 (2009) Jin, J., Wu, X.: Infinitely many radial solutions for Kirchhoff-type problems in \(R^{N}\). J. Math. Anal. Appl. 369, 564–574 (2012) Zhang, Q., Sun, H., Nieto, J.J.: Positive solution for a superlinear Kirchhoff type problem with a parameter. Nonlinear Anal. 95, 333–338 (2014) Sun, J., Wu, T.: Existence and multiplicity of solutions for an indefinite Kirchhoff-type equation in bounded domains. P. Roy. Soc. Edinb. A 146, 435–448 (2016) Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973) Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 211, 246–255 (2006) Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317, 456–463 (2006) Xiang, M., Zhang, B., Guo, X.: Infinitely solutions for a fractional Kirchhoff type problem via Fountain Theorem. Nonlinear Anal. 120, 299–313 (2015) He, X., Zou, W.: Multiplicity of solutions for a class of Kirchhoff type problems. Acta Math. Appl. Sin. Engl. Ser. 26, 387–394 (2010) Mao, A., Zhang, Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the \(P.S.\) condition. Nonlinear Anal. 70, 1275–1287 (2009) Alves, C., Souto, M., Soares, S.: Schrödinger–Poisson equations without Ambrosetti–Rabinowitz condition. J. Math. Anal. Appl. 377, 584–592 (2011) Kim, S., Seok, J.: On nodal solutions of the nonlinear Schrödinger–Poisson equations. Commun. Contemp. Math. 14, 1250041 (2012) Ianni, I.: Sign-changing radial solutions for the Schrödinger–Poisson–Slater problem. Topol. Methods Nonlinear Anal. 41, 365–386 (2013) Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in \({\mathbb{R}}^3\). Calc. Var. Partial. Differ. Equ. 52, 927–943 (2015) Bartsch, T.: Infinitely many solutions of a symmetric Dirichlet problem. Nonlinear Anal. 20, 1205–1216 (1993) Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston (1996) Chen, S., Tang, C.: High energy solutions for the superlinear Schödinger–Maxwell equations. Nonlinear Anal. 71, 4927–4934 (2009) Liu, Z., Sun, J.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differ. Equ. 172, 257–299 (2001) Sun, J.X.: On some problems about nonlinear operators, Ph.D. Thesis, Shandong University, Jinan (1984) Dancer, E.N., Zhang, Z.T.: Fucik spectrum, sign-changing, and multiple solutions for semilinear elliptic boundary value problems with resonance at infinity. J. Math. Anal. Appl. 250(2), 449–464 (2000)