Silver nanoparticles in X-ray biomedical applications
Tài liệu tham khảo
Alivov, 2014, Optimization of K-edge imaging for vulnerable plaques using gold nanoparticles and energy resolved photon counting detectors: a simulation study, Phys. Med. Biol., 59, 135, 10.1088/0031-9155/59/1/135
Baró, 1995, PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter, Nucl. Instrum. Methods Phys. Res. B, 100, 31, 10.1016/0168-583X(95)00349-5
Barreto, 2011, Nanomaterials: applications in cancer imaging and therapy, Adv. Mater., 23, H18, 10.1002/adma.201100140
Botchway, 2015, Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy, Br. J. Radiol., 88, 1, 10.1259/bjr.20150170
Caschera, 2016, Contrast agents in diagnostic imaging: present and future, Pharmacol. Res., 110, 65, 10.1016/j.phrs.2016.04.023
Ceppi, 2013, Study of Kβ X-ray emission spectroscopy applied to Mn (2 À x) V (1 þ x) O 4 (x¼ 0 and 1/3) oxyspinel and comparison with XANES, J. Phys. Chem. Solids, 75, 366, 10.1016/j.jpcs.2013.11.002
Coppola, 1984, Enhancement of chromosomal damage in human lymphocytes irradiated with X rays in the presence of iodine, Radiat. Prot. Dosim., 9, 99
Figueroa, 2015, Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line, Radiat. Phys. Chem., 117, 198, 10.1016/j.radphyschem.2015.08.017
García-Ruiz, 2015, Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines, Food Control, 50, 613, 10.1016/j.foodcont.2014.09.035
Guidelli, 2014, Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: an experimental approach, Med. Phys., 41, 032101, 10.1118/1.4865809
Hainfeld, 2004, The use of gold nanoparticles to enhance radiotherapy in mice, Phys. Med. Biol., 49, 309, 10.1088/0031-9155/49/18/N03
Jones, 2010, Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations, Med. Phys., 37, 3809, 10.1118/1.3455703
Kuang, 2013, First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging, IEEE Trans. Med. Imaging, 32, 262, 10.1109/TMI.2012.2223709
Lee, 2016, Nonclassical nucleation and growth of inorganic nanoparticles, Nat. Rev. Mater., 1, 16034, 10.1038/natrevmats.2016.34
Leo, 1994
Linic, 2015, Photochemical transformations on plasmonic metal nanoparticles, Nat. Mater., 14, 567, 10.1038/nmat4281
McMahon, 2011, Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles, Sci. Rep., 1, 1, 10.1038/srep00018
Mohanraj, 2006, Nanoparticles – a review, Trop. J. Pharm. Res Trop. J. Pharm. Res, 5
Nath, 1990, Iododeoxyuridine radiosensitization by low-and high-energy photons for brachytherapy dose rates lododeoxyuridine radiosensitization by low-and high-energy photons for brachytherapy dose rates', Radiat. Res., 124, 249, 10.2307/3577836
Neri, 2016, Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release, J. Nanopart. Res, 18, 1
Nie, 2010, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotechnol., 5, 15, 10.1038/nnano.2009.453
Pan, 2016, Organic nanoparticles in foods: fabrication, characterization, and utilization, Annu. Rev. Food Sci. Technol., 7, 245, 10.1146/annurev-food-041715-033215
Petros, 2010, Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov., 9, 615, 10.1038/nrd2591
Puntes, 2016, Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine, Br. J. Radiol., 89, 20150210, 10.1259/bjr.20150210
Rancoule, 2016, Nanoparticles in radiation oncology: from bench-side to bedside, Cancer Lett., 375, 256, 10.1016/j.canlet.2016.03.011
Regulla, 1998, Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces, Radiat. Res., 150, 92, 10.2307/3579649
Rice, 2013, Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study, Metrologia, 50, 663, 10.1088/0026-1394/50/6/663
Sancey, 2014, The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy, Br. J. Radiol., 87, 20140134, 10.1259/bjr.20140134
Sau, 2010, Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control, Adv. Mater., 22, 1781, 10.1002/adma.200901271
Sau, 2010, Properties and applications of colloidal nonspherical noble metal nanoparticles, Adv. Mater., 22, 1805, 10.1002/adma.200902557
Schreiner, 2004, Review of Fricke gel dosimeters, J. Phys. Conf. Ser., 3, 9, 10.1088/1742-6596/3/1/003
Schütz, 2013, Therapeutic nanoparticles in clinics and under clinical evaluation, Nanomedicine, 8, 449, 10.2217/nnm.13.8
Sempau, 2003, Experimental benchmarks of the Monte Carlo code PENELOPE, Nucl. Instrum. Methods Phys. Res. B, 207, 107, 10.1016/S0168-583X(03)00453-1
Smith, 2012, Nanoparticles in cancer imaging and therapy, J. Nanomater., 2012, 1, 10.1155/2012/891318
Taupin, 2015, Gadolinium nanoparticles and contrast agent as radiation sensitizers, Phys. Med. Biol., 60, 4449, 10.1088/0031-9155/60/11/4449
Thakor, 2011, Gold nanoparticles: a revival in precious metal administration to patients, Nano Lett., 11, 4029, 10.1021/nl202559p
Titus, 2016, Current scenario of biomedical aspect of metal-based nanoparticles on gel dosimetry, Appl. Microbiol. Biotechnol., 100, 4803, 10.1007/s00253-016-7489-5
Valente, 2007, Gel dosimetry measurements and Monte Carlo modeling for external radiotherapy photon beams: comparison with a treatment planning system dose distribution, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 580, 497, 10.1016/j.nima.2007.05.243
Vedelago, 2016, Fricke and polymer gel 2D dosimetry validation using Monte Carlo simulation, Radiat. Meas., 91, 54, 10.1016/j.radmeas.2016.05.003
Vedelago, 2014, Characterization of ferric ions diffusion in Fricke gel dosimeters by using inverse problem techniques, Radiat. Eff. Defects Solids, 169, 845, 10.1080/10420150.2014.958749
Weissleder, 2014, Imaging macrophages with nanoparticles, Nat. Mater., 13, 125, 10.1038/nmat3780
Wildgoose, 2006, Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications, Small, 2, 182, 10.1002/smll.200500324
Wu, 2013, A method of measuring gold nanoparticle concentrations by X-ray fluorescence for biomedical applications, Med. Phys., 40, 10
Yamada, 2015, Therapeutic gold, silver, and platinum nanoparticles, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 7, 428, 10.1002/wnan.1322