Silver nanoparticles in X-ray biomedical applications

Radiation Physics and Chemistry - Tập 130 - Trang 442-450 - 2017
Facundo Mattea1,2, José Vedelago2,3, Francisco Malano2,3, Cesar Gomez1, Miriam C. Strumia1, Mauro Valente2,3,4,5
1Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CONICET, Córdoba, Argentina
2Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), Universidad Nacional de Córdoba, Córdoba, Argentina
3Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, Argentina
4Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile
5Centro de Física e Ingeniería en Medicina (CFIM), Universidad de la Frontera, Temuco, Chile

Tài liệu tham khảo

Alivov, 2014, Optimization of K-edge imaging for vulnerable plaques using gold nanoparticles and energy resolved photon counting detectors: a simulation study, Phys. Med. Biol., 59, 135, 10.1088/0031-9155/59/1/135 Baró, 1995, PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter, Nucl. Instrum. Methods Phys. Res. B, 100, 31, 10.1016/0168-583X(95)00349-5 Barreto, 2011, Nanomaterials: applications in cancer imaging and therapy, Adv. Mater., 23, H18, 10.1002/adma.201100140 Botchway, 2015, Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy, Br. J. Radiol., 88, 1, 10.1259/bjr.20150170 Caschera, 2016, Contrast agents in diagnostic imaging: present and future, Pharmacol. Res., 110, 65, 10.1016/j.phrs.2016.04.023 Ceppi, 2013, Study of Kβ X-ray emission spectroscopy applied to Mn (2 À x) V (1 þ x) O 4 (x¼ 0 and 1/3) oxyspinel and comparison with XANES, J. Phys. Chem. Solids, 75, 366, 10.1016/j.jpcs.2013.11.002 Coppola, 1984, Enhancement of chromosomal damage in human lymphocytes irradiated with X rays in the presence of iodine, Radiat. Prot. Dosim., 9, 99 Figueroa, 2015, Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line, Radiat. Phys. Chem., 117, 198, 10.1016/j.radphyschem.2015.08.017 García-Ruiz, 2015, Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines, Food Control, 50, 613, 10.1016/j.foodcont.2014.09.035 Guidelli, 2014, Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: an experimental approach, Med. Phys., 41, 032101, 10.1118/1.4865809 Hainfeld, 2004, The use of gold nanoparticles to enhance radiotherapy in mice, Phys. Med. Biol., 49, 309, 10.1088/0031-9155/49/18/N03 Jones, 2010, Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations, Med. Phys., 37, 3809, 10.1118/1.3455703 Kuang, 2013, First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging, IEEE Trans. Med. Imaging, 32, 262, 10.1109/TMI.2012.2223709 Lee, 2016, Nonclassical nucleation and growth of inorganic nanoparticles, Nat. Rev. Mater., 1, 16034, 10.1038/natrevmats.2016.34 Leo, 1994 Linic, 2015, Photochemical transformations on plasmonic metal nanoparticles, Nat. Mater., 14, 567, 10.1038/nmat4281 McMahon, 2011, Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles, Sci. Rep., 1, 1, 10.1038/srep00018 Mohanraj, 2006, Nanoparticles – a review, Trop. J. Pharm. Res Trop. J. Pharm. Res, 5 Nath, 1990, Iododeoxyuridine radiosensitization by low-and high-energy photons for brachytherapy dose rates lododeoxyuridine radiosensitization by low-and high-energy photons for brachytherapy dose rates', Radiat. Res., 124, 249, 10.2307/3577836 Neri, 2016, Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release, J. Nanopart. Res, 18, 1 Nie, 2010, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotechnol., 5, 15, 10.1038/nnano.2009.453 Pan, 2016, Organic nanoparticles in foods: fabrication, characterization, and utilization, Annu. Rev. Food Sci. Technol., 7, 245, 10.1146/annurev-food-041715-033215 Petros, 2010, Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov., 9, 615, 10.1038/nrd2591 Puntes, 2016, Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine, Br. J. Radiol., 89, 20150210, 10.1259/bjr.20150210 Rancoule, 2016, Nanoparticles in radiation oncology: from bench-side to bedside, Cancer Lett., 375, 256, 10.1016/j.canlet.2016.03.011 Regulla, 1998, Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces, Radiat. Res., 150, 92, 10.2307/3579649 Rice, 2013, Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study, Metrologia, 50, 663, 10.1088/0026-1394/50/6/663 Sancey, 2014, The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy, Br. J. Radiol., 87, 20140134, 10.1259/bjr.20140134 Sau, 2010, Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control, Adv. Mater., 22, 1781, 10.1002/adma.200901271 Sau, 2010, Properties and applications of colloidal nonspherical noble metal nanoparticles, Adv. Mater., 22, 1805, 10.1002/adma.200902557 Schreiner, 2004, Review of Fricke gel dosimeters, J. Phys. Conf. Ser., 3, 9, 10.1088/1742-6596/3/1/003 Schütz, 2013, Therapeutic nanoparticles in clinics and under clinical evaluation, Nanomedicine, 8, 449, 10.2217/nnm.13.8 Sempau, 2003, Experimental benchmarks of the Monte Carlo code PENELOPE, Nucl. Instrum. Methods Phys. Res. B, 207, 107, 10.1016/S0168-583X(03)00453-1 Smith, 2012, Nanoparticles in cancer imaging and therapy, J. Nanomater., 2012, 1, 10.1155/2012/891318 Taupin, 2015, Gadolinium nanoparticles and contrast agent as radiation sensitizers, Phys. Med. Biol., 60, 4449, 10.1088/0031-9155/60/11/4449 Thakor, 2011, Gold nanoparticles: a revival in precious metal administration to patients, Nano Lett., 11, 4029, 10.1021/nl202559p Titus, 2016, Current scenario of biomedical aspect of metal-based nanoparticles on gel dosimetry, Appl. Microbiol. Biotechnol., 100, 4803, 10.1007/s00253-016-7489-5 Valente, 2007, Gel dosimetry measurements and Monte Carlo modeling for external radiotherapy photon beams: comparison with a treatment planning system dose distribution, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 580, 497, 10.1016/j.nima.2007.05.243 Vedelago, 2016, Fricke and polymer gel 2D dosimetry validation using Monte Carlo simulation, Radiat. Meas., 91, 54, 10.1016/j.radmeas.2016.05.003 Vedelago, 2014, Characterization of ferric ions diffusion in Fricke gel dosimeters by using inverse problem techniques, Radiat. Eff. Defects Solids, 169, 845, 10.1080/10420150.2014.958749 Weissleder, 2014, Imaging macrophages with nanoparticles, Nat. Mater., 13, 125, 10.1038/nmat3780 Wildgoose, 2006, Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications, Small, 2, 182, 10.1002/smll.200500324 Wu, 2013, A method of measuring gold nanoparticle concentrations by X-ray fluorescence for biomedical applications, Med. Phys., 40, 10 Yamada, 2015, Therapeutic gold, silver, and platinum nanoparticles, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 7, 428, 10.1002/wnan.1322