The psychobiology of emotion: the role of the oxytocinergic system

International Journal of Behavioral Medicine - Tập 12 - Trang 59-65 - 2005
Kerstin Uvnäs-Moberg1, Ingemar Arn1, David Magnusson2
1Department of Physiology and Pharmacology, Division of Pharmacology, Karolinska Institutet, Stockholm, Sweden
2Department of Psychology, Stockholm University, Stockholm, Sweden

Tóm tắt

A necessary condition for the individual’;s survival is the capacity for mental, behavioral, and physiological adaptation to external and internal conditions. Consequently, the integrated organism strives to maintain a dynamic, functional balance and integrity under varying conditions. Effective individual adaptation processes are basically dependent on the functioning of the integrated psychophysiological system. In humans, the brain plays a fundamental role in these processes. It serves the adaptation of individuals to current and anticipated conditions by selecting, interpreting, and transforming information into mental, behavioral, and physiological responses. In doing so, the incoming information is linked to existing structures of emotions, values, and goals. Consequently, the interpretation of external information may vary and become subjective depending on an individual’s present and past experiences (see e.g., Magnusson, 2003). Hitherto, empirical research has been mainly concerned with the aspect of the psychophysiological system, which is activated in situations that are perceived by the individual as threatening, harmful, or demanding and in which the fight—flight and stressresponsesdescribedbyCannon(1929)andSelye(1976)playanimportantrole. The aim of this article is to draw attention to a component of the psychophysiological system, the calm and connection system, underlying well-being and socialization. By including this new system, the model of the integrated individual becomes more complete and it enriches the understanding of emotional aspects of brain functioning.

Tài liệu tham khảo

Ågren, G., Lundeberg, T., Uvnäs-Moberg, K., & Sato, A. (1995). The oxytocin antagonist 1-deamino—2-D-Tyr-(Oet)—4-Thr—8- Orn-oxytocin reverses the increase in the withdrawal response latency to thermal, but not mechanical nociceptive stimuli following oxytocin administration or massage-like stroking in rats. Neuroscience Letters, 187, 49–52. Amico, J. A., Mantella, R. C., Vollmer, R. R., & Li, X. (2004). Anxiety and stress responses in female oxytocin deficient mice. J Neuroendocrinology, 16, 319–324. Arletti, R., & Bertolini, A. (1987). Oxytocin as an antidepressant in twoanimalmodelsofdepression. LifeSciences, 41, 1725–1730. Barker, D. J. P. (1998). In utero programming of chronic disease. Clinical Science, 95, 115–128. Caldij, C., Diorio, J., & Meaney, M. J. (2000). Variations in maternal care in infancy regulate the development of stress reactivity. Biological Psychiatry, 15, 1164–1174. Cannon, W. B. (1929). Bodily changes in pain, hunger, fear and rage. New York: Appleton. Carmichael, M. S., Humbert, R., Dixen, J., Palmisano, G., Greenleaf, W., & Davidson, J. M. (1987). Plasma oxytocin increases in the human sexual response. Journal of Clinical Endocrinology and Metabolism, 64, 27–31. Carter, C. S. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23, 779–818. Champagne, F., & Meaney, M. J. (2001). Like mother, like daughter. Evidence for nongenomic transmission of parental behavior and stress responsitivity. Progress in Brain Research, 133, 287–302. Choleris, E., Gustafsson, J. A., Korach, K. S., Muglia, L. J., Pfaff, D. W., & Ogawa, S. (2003). An estrogen-dependent four-gene micronet regulating social recognition: A study with oxytocin and estrogoen receptor-alpha and-beta knockout mice. Proceedings of the National Academy of Science, 13, 6192–7. Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. Journal of the American Medical Association, 267, 1244–1252. Cowen, E. L. (1991). In pursuit of wellness. American Psychologist, 46, 404–408. Darwin, C. (1873). The expression of emotions in man and animals. New York: Appleton. Díaz-Cabiale, Z., Petersson, M., Narváez, J. A., Uvnäs-Moberg, K., & Fuxe, K. (2000). Systemic oxytocin treatment modulates alpha2/adrenoceptors in telencephalic and diencephalic regions of the rat. Brain Research, 887, 421–425. Ferguson, J. N., Aldag, J. M., Insel, T. R., & Young, L. J. (2001). Oxytocin in the medial amygdala is essential for social recognition in the mouse. Journal of Neuroscience, 158, 278–285. Ferguson, J. N., Young, L. J., Harn, E. F., Nazuk, M. M., Insel, T. R., & Winslow, J. T. (2000). Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284–288. Heinrichs, M., Neumann, I., & Ehlert, U. (2002). Lactation and stress: Protective effects of breastfeeding in humans. Stress, 5, 195–203. Insel, T. R. (1992). Oxytocin—A neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic and comparative studies. Psychoneuroendocrinology, 17, 3–35. Holst, S., Uvnäs-Moberg, K., & Petersson, M. (2000). Postnatal oxytocin treatment and postnatal stroking of rats reduce blood pressure in adulthood. Autonomic Neuroscience, 30, 85–90. Kendrick, K. M., Keverne, E. B., Baldwin, B. A., & Sharman, D. F. (1986). Cerebrospinal fluid levels of acetylcholinesterase, monoamines and oxytocin during labour, parturition, vaginocervical stimulation, lamb separation and suckling in sheep. Neuroendocrinology, 44, 149–156. Knox, S. S., & Uvnäs-Moberg, K. (1998). Social isolation and cardiovascular disease: An atherosclerotic pathway? Psychoneuroendocrinology, 23, 877–890. Lund, I., Lundeberg, T., Kurosawa, M., & Uvnäs-Moberg, K. (1999). Sensory stimulation (massage) reduces blood pressure in unanaesthetized rats. Journal of theAutonomic Nervous System, 78, 30–37. Lund, I., Yu, L. C., Uvnäs-Moberg, K., Wang, J., Yu, C., Kurosawa, M., Ågren, G., Rosen, A., Lekman, M., & Lundeberg, T. (2002). Repeated massage-like stimulation induces long-term effects on nociception: Contribution of oxytocinergic mechanisms. European Journal of Neuroscience, 16, 330–338. Magnusson, D. (2001). The holistic-interactionistic paradigm: Some directions for empirical developmental research. European Psychologist, 6, 153–162. Magnusson, D. (2003). The person approach: Concepts, measurement models, and research strategies. New Directions in Child Development (Special issue), 101, 3–23. Magnusson, D., & Mahoney, J. L. (2002). A holistic person approach for research on positive development. In G. Aspinwall & U. M. Staudinger (Eds.), A psychology of human strengths: Fundamental questions and future directions for a positive psychology (pp. 227–243). Washington, DC: American Psychological Association. Mason, J. W. (1968a). A review of psychoendocrine research on the sympathetic-adrenal medullary system. Psychosomatic Medicine, 30, 631–653. Mason, J. W. (1968b). A review of psychoendocrine research on the pituitary-adrenal cortical system. Psychosomatic Medicine, 30, 567–597. McCarthy, M. M., & Altemus, M. (1997). Central nervous system actions of oxytocin and modulation of behavior in humans. Molecular Medicine Today, 3, 269–275. Nissen, E., Gustavsson, P., Widström, A. M., & Uvnäs-Moberg, K. (1998). Oxytocin, prolactin, milk production and their relationship with personality traits in women after vaginal delivery or cesarean section. Journal of Psychosomatic Obstetrics and Gynaecology, 19, 49–58. Nissen, E., Uvnäs-Moberg, K., Svensson, K., Stock, S., Widstr öm, A. M., & Winberg, J. (1996). Different patterns of oxytocin, prolactin but not cortisol release during breastfeeding in women delivered by caesarean section or by the vaginal route. Early Human Development, 45, 103–118. Petersson, M., Ahlenius, S., Wiberg, U., Alster, P., & Uvnäs-Moberg, K. (1998a). Steroid dependent effects of oxytocin on spontaneous motor activity in female rats. Brain Research Bulletin, 45, 301–305. Petersson, M., Alster, P., Lundeberg, T., & Uvnäs-Moberg, K. (1996a).Oxytocincausesalong-term decreaseofbloodpressure infemaleandmalerats. Physiology & Behavior, 60, 1311–1315. Petersson, M., Alster, P., Lundeberg, T., & Uvnäs-Moberg, K. (1996b). Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats. Neuroscience Letters, 212, 87–90. Petersson, M., Hulting, A. L., Andersson, R., & Uvnäs-Moberg, K. (1999c). Long-term changes in gastrin, cholecystokinin and insulin in response to oxytocin treatment. Neuroendocrinology, 69, 202–208. Petersson, M., Hulting, A.-L., & Uvnäs-Moberg, K. (1999a). Oxytocin causes a sustained decrease in plasma levels of corticosterone in rats. Neuroscience Letters, 264, 41–44. Petersson, M., Lundeberg, T., Sohlström, A., Wiberg, U., & Uvnäs-Moberg, K. (1998b). Oxytocin increases the survival of musculocutaneous flaps. Naunyn-Schmiedeberg’s Archives of Pharmacology, 357, 701–704. Petersson, M., Lundeberg, T., & Uvnäs-Moberg, K. (1999b). Oxytocin enhances the effects of clonidine on blood pressure and locomotor activity in rats. Journal of the Autonomic Nervous System, 78, 49–56. Petersson, M., Uvnäs-Moberg, K., Erhardt, S., & Engberg, G. (1998c). Oxytocin increases locus coeruleus alpha 2-adrenoceptor responsiveness in rats. Neuroscience Letters, 255, 115–118. Rajkowski, J., Kubiak, P., Ivanova, S., & Aston Jones, G. (1998). State related activity, reactivity of locus coeruleus neurons in behaving monkeys. In D. Goldstein, G. Eisenhofer, & T. McCarty (Eds.), Advances in pharmacology, catecholamines bridging basic science with clinical medicine (pp. 740–744). San Diego, CA: Academic. Richard, P., Moos, F., & Freund-Mercier, M.-J. (1991). Central effects of oxytocin. Physiology Review, 71, 331–370. Ryff, C. D., & Singer, B. (1998). The contours of positive human health. Psychological Inquiry, 9, 1–28. Sansone, G. R., Gerdes, C. A., Steinman, J. L., Winslow, J. T., Ottenweller, J. E., Komisaruk, B. R., & Insel, T. R. (2002). Vaginocervical stimulation releases oxytocin within the spinal cord in rats. Neuroendocrinology, 75, 306–315. Selye, H. (1976). Stress in health and disease. Boston: Butterworths. Sofroniew, M. W. (1983). Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends in Neuroscience, 6, 467–472. Sohlstöm, A., Carlsson, C., & Uvnäs-Moberg, K. (2000). Effects of oxytocin treatment in early life on body weight and corticosterone in adult offspring from ad libitum fed and food restricted rats. Biology of the Neonate, 78, 33–40. Stock, S., & Uvnäs-Moberg, K. (1988). Increased plasma levels of oxytocin in response to afferent electrical stimulation of the sciatic and vagal nerves and in response to touch and pinch in anaesthetized rats. Acta Physiologica Scandinavica, 132, 29–34. Taylor, S. E., Klein, L. C., Gruenewald, T. L., Gurung, R. A., & Updegraffe, J. A. (2002). Biobehavioural responses to stress in females: Tend and befriend, not fight-flight. Psychological Review, 107, 411–429. Teicher, M. H. (2002, March). Scars that won’t heal: The neurobiology of child abuse. Scientific American, 286, 54–61. Turner, R. A., Altemus, M., Enos, T., Cooper, B., & McGuiness, T. (1999). Preliminary research on plasma oxytocin in normal cycling women: Investigating emotion and interpersonal distress. Psychiatry, 62, 97–113. Uvnäs-Moberg, K. (1997). Oxytocin-linked antistress effects—the relaxation and growth response. Acta Physiologica Scandinavica, 161(Suppl. 640), 38–42. Uvnäs-Moberg, K. (1998a). Antistress pattern induced by oxytocin. News in Physiological Sciences, 13, 22–26. Uvnäs-Moberg, K. (1998b). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23, 819–825. Uvnäs-Moberg, K. (2003). The oxytocin factor: Tapping the hormone of calm, love and healing. Boston: Perseus. Uvnäs-Moberg, K., Ahlenius, S., Hillegaart, V., & Alster, P. (1994). High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacology, Biochemistry, and Behavior, 49, 101–106. Uvnäs-Moberg, K., Alster, P., Hillegaart, V., & Ahlenius, S. (1992). Oxytocin reduces exploratory motor behavior and shifts the activity towards the centre of the arena in male rats. Acta Physiologica Scandinavica, 145, 429–430. Uvnäs-Moberg, K., Alster, P., & Petersson, M. (1996a). Dissociation of oxytocin effects on body weight on two variants of female Sprague-Dawley rats. Integrative Physiological and Behavioral Science, 31, 44–55. Uvnäs-Moberg, K., Alster, P., Lund, I., Lundeberg, T., Kurosawa, M., & Ahlenius, S. (1996b). Stroking of the abdomen causes decreased locomotor activity in conscious male rats. Physiology & Behavior, 60, 1409–1411. Uvnäs-Moberg, K., Björkstrand, E., Hillegaart, V., & Ahlenius, S. (1999). Oxytocin as a possible mediator of SSRI-induced antidepressant effects. Psychopharmacology. 142, 95–101. Uvnäs-Moberg, K., Bruzelius, G., Alster, P., & Lundeberg, T. (1993). The antinociceptive effect of non-noxious sensory stimulation is mediated partly through oxytocinergic mechanisms. Acta Physiologica Scandinavica, 149, 199–204. Uvnäs-Moberg, K., Eklund, M., Hillegaart, V., & Ahlenius, S. (2000). Improved conditioned avoidance learning by oxytocin administration in high-emotional male Sprague-Dawley rats. Regulatory Peptides, 88, 27–32. Uvnäs-Moberg, K., Widström, A. M., Nissen, E., & Björwell, H. (1990). Personality traits in women 4 days postpartum and their correlation with plasma levels of oxytocin and prolactin. Journal of Psychosomatic Obstetrics and Gynaecology, 11, 261–273. Wigger, A., & Neumann, I. D. (2002). Endogenous opioid regulation of stress-induced oxytocin release within the hypothalamic paraventricular nucleus is reversed in late pregnancy: A microdialysis study. Neuroscience, 112, 121–9. Windle, R. J., Shanks, N., Lightman, S. L., & Ingram, C. D. (1997). Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 138, 2829–2834. Winslow, J. T., Hearn, E. F., Fergusson, J., Young, L. J., Matzuk, M. M., & Insel, T. R. (2001). Infant vocalization, adult aggression and fear behavior of an oxytocin null mutant mouse. Hormones and Behavior, 39, 11–21.