Taylor series method for solving a class of nonlinear singular boundary value problems arising in applied science

Applied Mathematics and Computation - Tập 235 - Trang 110-117 - 2014
Shih-Hsiang Chang1
1Department of Mechanical Engineering, Far East University, Tainan 74448, Taiwan

Tài liệu tham khảo

Pandey, 1996, On a class of weakly regular singular two-point boundary value problems, II, J. Differ. Equ., 127, 110, 10.1006/jdeq.1996.0064 Pandey, 1997, On a class of regular singular two-point boundary value problems, J. Math. Anal. Appl., 208, 388, 10.1006/jmaa.1997.5320 Pandey, 2008, Existence-uniqueness results for a class of singular boundary value problems arising in physiology, Nonlinear Anal. Real World Appl., 9, 40, 10.1016/j.nonrwa.2006.09.001 Richardson, 1921 Flesch, 1975, The distribution of heat sources in the human head: a theoretical consideration, J. Theor. Biol., 54, 285, 10.1016/S0022-5193(75)80131-7 Kumar, 2010, Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems, Comput. Chem. Eng., 52, 1750, 10.1016/j.compchemeng.2010.02.035 Chang, 2009, Transient electroosmotic flow in cylindrical microcapillaries containing salt-free medium, Biomicrofluidics, 3, 012802, 10.1063/1.3064113 Chang, 2010, Electroosmotic flow in slit microchannel containing salt-free solution, Eur. J. Mech. B: Fluids, 29, 337, 10.1016/j.euromechflu.2010.04.003 Chang, 2012, Electroosmotic flow in a dissimilarly charged slit microchannel containing salt-free solution, Eur. J. Mech. B: Fluids, 34, 85, 10.1016/j.euromechflu.2012.01.020 Hunter, 1981 Israelachvili, 1991 Pandey, 1997, A finite difference method for a class of singular two-point boundary value problems arising in physiology, Int. J. Comput. Math., 65, 131, 10.1080/00207169708804603 Pandey, 2004, On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology, J. Comput. Appl. Math., 166, 553, 10.1016/j.cam.2003.09.053 Pandey, 2009, On the convergence of a fourth-order method for a class of singular boundary value problems, J. Comput. Appl. Math., 224, 734, 10.1016/j.cam.2008.06.005 El-Sayed, 1998, Multi-integral methods for nonlinear boundary-value problems, Int. J. Comput. Math., 72, 259 El-Sayed, 2002, Integral methods for computing solutions of a class of singular two-point boundary value problems, Appl. Math. Comput., 130, 235, 10.1016/S0096-3003(01)00091-1 Ravi Kanth, 2006, Cubic spline for a class of nonlinear singular boundary value problems arising in physiology, Appl. Math. Comput., 174, 768, 10.1016/j.amc.2005.05.022 Rashidinia, 2007, The numerical solution of nonlinear singular boundary value problems arising in physiology, Appl. Math. Comput., 185, 360, 10.1016/j.amc.2006.06.104 Caglar, 2009, B-spline solution of nonlinear singular boundary value problems arising in physiology, Chaos, Solitons Fractals, 39, 1324, 10.1016/j.chaos.2007.06.007 Khuri, 2010, A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comput. Model., 52, 626, 10.1016/j.mcm.2010.04.009 Ravi Kanth, 2010, He’s variational iteration method for treating nonlinear singular boundary value problems, Comput. Math. Appl., 60, 821, 10.1016/j.camwa.2010.05.029 Wazwaz, 2011, The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models, Commun. Nonlinear Sci. Numer. Simul., 16, 3881, 10.1016/j.cnsns.2011.02.026 Chang, 2010, Numerical solution of Troesch’s problem by simple shooting method, Appl. Math. Comput., 216, 3303, 10.1016/j.amc.2010.04.056 Chang, 2010, Variational iteration method for solving Troesch’s problem, J. Comput. Appl. Math., 234, 3043, 10.1016/j.cam.2010.04.018 Chang, 2012, An efficient method for solving Troesch’s problem, Adv. Sci. Lett., 9, 920, 10.1166/asl.2012.2611 Barrio, 2011, Breaking the limits: the Taylor series method, Appl. Math. Comput., 217, 7940, 10.1016/j.amc.2011.02.080 Pukhov, 1986 Zhou, 1986 Bervillier, 2012, Status of the differential transform method, Appl. Math. Comput., 218, 10158, 10.1016/j.amc.2012.03.094 Baker, 1975 Baker, 1981, Padé approximants, Part I, Basic theory, vol. 13 Baker, 1996, Padé approximants, Part II, Extensions and Applications, vol. 14 Bervillier, 2009, Conformal mappings versus other Taylor series methods for solving ordinary differential equations: illustration on anharmonic oscillators, J. Phys. A: Math. Theor., 42, 485202, 10.1088/1751-8113/42/48/485202 Bervillier, 2008, Analytical approximation schemes for solving exact renormalization group equations. II Conformal mappings, Nucl. Phys. B, 801, 296, 10.1016/j.nuclphysb.2008.02.021 Abbasbandy, 2011, Analytical continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations, Appl. Math. Comput., 218, 2178, 10.1016/j.amc.2011.07.035 Jang, 1997, Analysis of the response of a strongly nonlinear damped system using a differential transformation technique, Appl. Math. Comput., 88, 137, 10.1016/S0096-3003(96)00308-6 Chang, 2008, A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Appl. Math. Comput., 195, 799, 10.1016/j.amc.2007.05.026 Chang, 2009, A new algorithm for calculating two-dimensional differential transform of nonlinear functions, Appl. Math. Comput., 215, 2486, 10.1016/j.amc.2009.08.046 Miller, 1946 Henrici, 1956, Automatic computations with power series, J. ACM, 3, 10, 10.1145/320815.320819 Gibbons, 1960, A program for the automatic integration of differential equations using the method of Taylor series, Comput. J., 3, 108, 10.1093/comjnl/3.2.108 Barton, 1971, The automatic solution of systems of ordinary differential equations by the method of Taylor series, Comput. J., 14, 243, 10.1093/comjnl/14.3.243 Rall, 1981, 120 Rall, 1991, Point and interval differentiation arithmetics Zeilberger, 1995, Miller recurrence for exponentiating a polynomial and its q-analog, J. Differ. Equ. Appl., 1, 57, 10.1080/10236199508808006 Knuth, 1997, 2 Leavitt, 1966, Methods and applications of power series, Math. Comput., 20, 46, 10.1090/S0025-5718-1966-0187402-4 Corliss, 1982, Solving ordinary differential equations using Taylor series, ACM Trans. Math. Software, 8, 114, 10.1145/355993.355995 Griewank, 1991 Berz, 1996 Rach, 1992, A modified decomposition, Comput. Math. Appl., 23, 17, 10.1016/0898-1221(92)90076-T Duan, 2011, New higher-order numerical one-step methods based on the Adomian and the modified decomposition methods, Appl. Math. Comput., 218, 2810, 10.1016/j.amc.2011.08.024 Elsaid, 2012, Fractional differential transform method combined with the Adomian polynomials, Appl. Math. Comput., 218, 6899, 10.1016/j.amc.2011.12.066 Fatoorehchi, 2013, Improving the differential transform method: a novel technique to obtain the differential transforms of nonlinearities by the Adomian polynomials, Appl. Math. Model., 37, 6008, 10.1016/j.apm.2012.12.007 Lin, 1976, Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics, J. Theor. Biol., 60, 449, 10.1016/0022-5193(76)90071-0 McElwain, 1978, A re-examination of oxygen diffusion in a spherical cell with Michaelis–Menten nonlinear oxygen uptake kinetics, J. Theor. Biol., 71, 255, 10.1016/0022-5193(78)90270-9 Strauss, 1987, Osmotic pressure for concentrated suspensions of polydisperse particles with thick double layers, J. Colloid Interface Sci., 118, 326, 10.1016/0021-9797(87)90467-X Ohshima, 1982, Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle, J. Colloid Interface Sci., 90, 17, 10.1016/0021-9797(82)90393-9