Taylor series method for solving a class of nonlinear singular boundary value problems arising in applied science
Tài liệu tham khảo
Pandey, 1996, On a class of weakly regular singular two-point boundary value problems, II, J. Differ. Equ., 127, 110, 10.1006/jdeq.1996.0064
Pandey, 1997, On a class of regular singular two-point boundary value problems, J. Math. Anal. Appl., 208, 388, 10.1006/jmaa.1997.5320
Pandey, 2008, Existence-uniqueness results for a class of singular boundary value problems arising in physiology, Nonlinear Anal. Real World Appl., 9, 40, 10.1016/j.nonrwa.2006.09.001
Richardson, 1921
Flesch, 1975, The distribution of heat sources in the human head: a theoretical consideration, J. Theor. Biol., 54, 285, 10.1016/S0022-5193(75)80131-7
Kumar, 2010, Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems, Comput. Chem. Eng., 52, 1750, 10.1016/j.compchemeng.2010.02.035
Chang, 2009, Transient electroosmotic flow in cylindrical microcapillaries containing salt-free medium, Biomicrofluidics, 3, 012802, 10.1063/1.3064113
Chang, 2010, Electroosmotic flow in slit microchannel containing salt-free solution, Eur. J. Mech. B: Fluids, 29, 337, 10.1016/j.euromechflu.2010.04.003
Chang, 2012, Electroosmotic flow in a dissimilarly charged slit microchannel containing salt-free solution, Eur. J. Mech. B: Fluids, 34, 85, 10.1016/j.euromechflu.2012.01.020
Hunter, 1981
Israelachvili, 1991
Pandey, 1997, A finite difference method for a class of singular two-point boundary value problems arising in physiology, Int. J. Comput. Math., 65, 131, 10.1080/00207169708804603
Pandey, 2004, On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology, J. Comput. Appl. Math., 166, 553, 10.1016/j.cam.2003.09.053
Pandey, 2009, On the convergence of a fourth-order method for a class of singular boundary value problems, J. Comput. Appl. Math., 224, 734, 10.1016/j.cam.2008.06.005
El-Sayed, 1998, Multi-integral methods for nonlinear boundary-value problems, Int. J. Comput. Math., 72, 259
El-Sayed, 2002, Integral methods for computing solutions of a class of singular two-point boundary value problems, Appl. Math. Comput., 130, 235, 10.1016/S0096-3003(01)00091-1
Ravi Kanth, 2006, Cubic spline for a class of nonlinear singular boundary value problems arising in physiology, Appl. Math. Comput., 174, 768, 10.1016/j.amc.2005.05.022
Rashidinia, 2007, The numerical solution of nonlinear singular boundary value problems arising in physiology, Appl. Math. Comput., 185, 360, 10.1016/j.amc.2006.06.104
Caglar, 2009, B-spline solution of nonlinear singular boundary value problems arising in physiology, Chaos, Solitons Fractals, 39, 1324, 10.1016/j.chaos.2007.06.007
Khuri, 2010, A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comput. Model., 52, 626, 10.1016/j.mcm.2010.04.009
Ravi Kanth, 2010, He’s variational iteration method for treating nonlinear singular boundary value problems, Comput. Math. Appl., 60, 821, 10.1016/j.camwa.2010.05.029
Wazwaz, 2011, The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models, Commun. Nonlinear Sci. Numer. Simul., 16, 3881, 10.1016/j.cnsns.2011.02.026
Chang, 2010, Numerical solution of Troesch’s problem by simple shooting method, Appl. Math. Comput., 216, 3303, 10.1016/j.amc.2010.04.056
Chang, 2010, Variational iteration method for solving Troesch’s problem, J. Comput. Appl. Math., 234, 3043, 10.1016/j.cam.2010.04.018
Chang, 2012, An efficient method for solving Troesch’s problem, Adv. Sci. Lett., 9, 920, 10.1166/asl.2012.2611
Barrio, 2011, Breaking the limits: the Taylor series method, Appl. Math. Comput., 217, 7940, 10.1016/j.amc.2011.02.080
Pukhov, 1986
Zhou, 1986
Bervillier, 2012, Status of the differential transform method, Appl. Math. Comput., 218, 10158, 10.1016/j.amc.2012.03.094
Baker, 1975
Baker, 1981, Padé approximants, Part I, Basic theory, vol. 13
Baker, 1996, Padé approximants, Part II, Extensions and Applications, vol. 14
Bervillier, 2009, Conformal mappings versus other Taylor series methods for solving ordinary differential equations: illustration on anharmonic oscillators, J. Phys. A: Math. Theor., 42, 485202, 10.1088/1751-8113/42/48/485202
Bervillier, 2008, Analytical approximation schemes for solving exact renormalization group equations. II Conformal mappings, Nucl. Phys. B, 801, 296, 10.1016/j.nuclphysb.2008.02.021
Abbasbandy, 2011, Analytical continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations, Appl. Math. Comput., 218, 2178, 10.1016/j.amc.2011.07.035
Jang, 1997, Analysis of the response of a strongly nonlinear damped system using a differential transformation technique, Appl. Math. Comput., 88, 137, 10.1016/S0096-3003(96)00308-6
Chang, 2008, A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Appl. Math. Comput., 195, 799, 10.1016/j.amc.2007.05.026
Chang, 2009, A new algorithm for calculating two-dimensional differential transform of nonlinear functions, Appl. Math. Comput., 215, 2486, 10.1016/j.amc.2009.08.046
Miller, 1946
Henrici, 1956, Automatic computations with power series, J. ACM, 3, 10, 10.1145/320815.320819
Gibbons, 1960, A program for the automatic integration of differential equations using the method of Taylor series, Comput. J., 3, 108, 10.1093/comjnl/3.2.108
Barton, 1971, The automatic solution of systems of ordinary differential equations by the method of Taylor series, Comput. J., 14, 243, 10.1093/comjnl/14.3.243
Rall, 1981, 120
Rall, 1991, Point and interval differentiation arithmetics
Zeilberger, 1995, Miller recurrence for exponentiating a polynomial and its q-analog, J. Differ. Equ. Appl., 1, 57, 10.1080/10236199508808006
Knuth, 1997, 2
Leavitt, 1966, Methods and applications of power series, Math. Comput., 20, 46, 10.1090/S0025-5718-1966-0187402-4
Corliss, 1982, Solving ordinary differential equations using Taylor series, ACM Trans. Math. Software, 8, 114, 10.1145/355993.355995
Griewank, 1991
Berz, 1996
Rach, 1992, A modified decomposition, Comput. Math. Appl., 23, 17, 10.1016/0898-1221(92)90076-T
Duan, 2011, New higher-order numerical one-step methods based on the Adomian and the modified decomposition methods, Appl. Math. Comput., 218, 2810, 10.1016/j.amc.2011.08.024
Elsaid, 2012, Fractional differential transform method combined with the Adomian polynomials, Appl. Math. Comput., 218, 6899, 10.1016/j.amc.2011.12.066
Fatoorehchi, 2013, Improving the differential transform method: a novel technique to obtain the differential transforms of nonlinearities by the Adomian polynomials, Appl. Math. Model., 37, 6008, 10.1016/j.apm.2012.12.007
Lin, 1976, Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics, J. Theor. Biol., 60, 449, 10.1016/0022-5193(76)90071-0
McElwain, 1978, A re-examination of oxygen diffusion in a spherical cell with Michaelis–Menten nonlinear oxygen uptake kinetics, J. Theor. Biol., 71, 255, 10.1016/0022-5193(78)90270-9
Strauss, 1987, Osmotic pressure for concentrated suspensions of polydisperse particles with thick double layers, J. Colloid Interface Sci., 118, 326, 10.1016/0021-9797(87)90467-X
Ohshima, 1982, Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle, J. Colloid Interface Sci., 90, 17, 10.1016/0021-9797(82)90393-9