Neural representation for object recognition in inferotemporal cortex
Tài liệu tham khảo
Perry, 2014, Feature integration and object representations along the dorsal stream visual hierarchy, Front Comput Neurosci, 8, 84, 10.3389/fncom.2014.00084
Sereno, 1998, Shape selectivity in primate lateral intraparietal cortex, Nature, 395, 500, 10.1038/26752
Lehky, 2007, Comparison of shape encoding in primate dorsal and ventral visual pathways, J Neurophysiol, 97, 307, 10.1152/jn.00168.2006
Konen, 2008, Two hierarchically organized neural systems for object information in human visual cortex, Nat Neurosci, 11, 224, 10.1038/nn2036
Theys, 2015, Shape representations in the primate dorsal visual stream, Front Comput Neurosci, 9, 43, 10.3389/fncom.2015.00043
Sereno, 2002, Three-dimensional shape representation in monkey cortex, Neuron, 33, 635, 10.1016/S0896-6273(02)00598-6
Tanaka, 1996, Inferotemporal cortex and object vision, Annu Rev Neurosci, 19, 109, 10.1146/annurev.ne.19.030196.000545
Kourtzi, 2011, Neural representations for object perception: structure, category, and adaptive coding, Annu Rev Neurosci, 34, 45, 10.1146/annurev-neuro-060909-153218
Tanaka, 2003, Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities, Cereb Cortex, 13, 90, 10.1093/cercor/13.1.90
Murata, 2000, Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP, J Neurophysiol, 83, 2580, 10.1152/jn.2000.83.5.2580
Premereur, 2015, Effective connectivity of depth-structure-selective patches in the lateral bank of the macaque intraparietal sulcus, PLoS Biol, 13, e1002072, 10.1371/journal.pbio.1002072
Miller, 2001, An integrative theory of prefrontal cortex function, Annu Rev Neurosci, 24, 167, 10.1146/annurev.neuro.24.1.167
Donoso, 2014, Human cognition. Foundations of human reasoning in the prefrontal cortex, Science, 344, 1481, 10.1126/science.1252254
Badre, 2008, Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes, Trends Cogn Sci, 12, 193, 10.1016/j.tics.2008.02.004
Mansouri, 2009, Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex, Nat Neurosci Rev, 10, 141, 10.1038/nrn2538
Matsumoto, 2004, The role of the medial prefrontal cortex in achieving goals, Curr Opin Neurobiol, 14, 178, 10.1016/j.conb.2004.03.005
Suzuki, 2014, The perirhinal cortex, Annu Rev Neurosci, 37, 39, 10.1146/annurev-neuro-071013-014207
Eichenbaum, 2007, The medial temporal lobe and recognition memory, Annu Rev Neurosci, 30, 123, 10.1146/annurev.neuro.30.051606.094328
Meunier, 1993, Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys, J Neurosci, 13, 5418, 10.1523/JNEUROSCI.13-12-05418.1993
Zola-Morgan, 1989, Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment, J Neurosci, 9, 4335
Graham, 2010, Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception, Neuropsychologia, 48, 831, 10.1016/j.neuropsychologia.2010.01.001
Ritchey, 2015, Cortico-hippocampal systems involved in memory and cognition: the PMAT framework, Prog Brain Res, 219, 45, 10.1016/bs.pbr.2015.04.001
Osada, 2008, Towards understanding of the cortical network underlying associative memory, Proc R Soc Lond Ser B: Biol Sci, 363, 2187, 10.1098/rstb.2008.2271
Liu, 2000, Learning motivational significance of visual cues for reward schedules requires rhinal cortex, Nat Neurosci, 3, 1307, 10.1038/81841
Mogami, 2006, Reward association affects neuronal responses to visual stimuli in macaque TE and perirhinal cortices, J Neurosci, 26, 6761, 10.1523/JNEUROSCI.4924-05.2006
Eradath, 2015, Time context of cue-outcome associations represented by neurons in perirhinal cortex, J Neurosci, 35, 4350, 10.1523/JNEUROSCI.4730-14.2015
Felleman, 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb Cortex, 1, 1, 10.1093/cercor/1.1.1
Kourtzi, 2001, Representation of perceived object shape by the human lateral occipital complex, Science, 293, 1506, 10.1126/science.1061133
Orban, 2004, Comparative mapping of higher visual areas in monkeys and humans, Trends Cogn Sci, 8, 315, 10.1016/j.tics.2004.05.009
Webster, 1991, Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys, J Neurosci, 11, 1095, 10.1523/JNEUROSCI.11-04-01095.1991
Saleem, 1996, Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey, J Neurosci, 16, 4757, 10.1523/JNEUROSCI.16-15-04757.1996
Yoshida, 2003, Anatomical organization of forward fiber projections from area TE to perirhinal neurons representing visual long-term memory in monkeys, Proc Natl Acad Sci U S A, 100, 4257, 10.1073/pnas.0736457100
Suzuki, 1994, Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents, J Comp Neurol, 350, 497, 10.1002/cne.903500402
Webster, 1994, Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys, Cereb Cortex, 4, 470, 10.1093/cercor/4.5.470
Yeterian, 2012, The cortical connectivity of the prefrontal cortex in the monkey brain, Cortex, 48, 58, 10.1016/j.cortex.2011.03.004
Ungerleider, 1989, Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys, Exp Brain Res, 76, 473, 10.1007/BF00248903
Kobatake, 1994, Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex, J Neurophysiol, 71, 856, 10.1152/jn.1994.71.3.856
Rust, 2010, Selectivity and tolerance (‘invariance’) both increase as visual information propagates from cortical area V4 to IT, J Neurosci, 30, 12978, 10.1523/JNEUROSCI.0179-10.2010
Ito, 1995, Size and position invariance of neuronal responses in monkey inferotemporal cortex, J Neurophysiol, 73, 218, 10.1152/jn.1995.73.1.218
Kravitz, 2013, The ventral visual pathway: an expanded neural framework for the processing of object quality, Trends Cogn Sci, 17, 26, 10.1016/j.tics.2012.10.011
Riesenhuber, 1999, Hierarchical models of object recognition in cortex, Nat Neurosci, 2, 1019, 10.1038/14819
Serre, 2007, A quantitative theory of immediate visual recognition, Prog Brain Res, 165, 33, 10.1016/S0079-6123(06)65004-8
Fukushima, 1980, Neocognitron A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biol Cybern, 36, 193, 10.1007/BF00344251
Fukushima, 1988, Neocognitron A hierarchical neural network capable of visual pattern recognition, Neural Networks, 1, 119, 10.1016/0893-6080(88)90014-7
LeCun, 1995, Convolutional networks for images, speech and time-series, 255
LeCun, 2010, Convolutional networks and applications in vision, 253
Ghodrati, 2012, How can selection of biologically inspired features improve the performance of a robust object recognition model?, PLoS ONE, 7, e32357, 10.1371/journal.pone.0032357
Ciresan, 2012, Multi-column deep neural networks for image classification, 3642
Serre, 2007, Robust object recognition with cortex-like mechanisms, IEEE Trans Pattern Anal Mach Intell, 29, 411, 10.1109/TPAMI.2007.56
Krizhevsky, 2012, ImageNet Classification with Deep Convolutional Neural Networks, 25, 1097
Robinson, 2015, Invariant visual object recognition: biologically plausible approaches, Biol Cybern, 109, 505, 10.1007/s00422-015-0658-2
Güçlü, 2015, Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream, J Neurosci, 35, 10005, 10.1523/JNEUROSCI.5023-14.2015
Li, 2008
Grünwald, 2008
Hung, 2005, Fast readout of object identity from macaque inferior temporal cortex, Science, 310, 863, 10.1126/science.1117593
Cadieu, 2014, Deep neural networks rival the representation of primate IT cortex for core visual object recognition, PLoS Comput Biol, 10, e1003963, 10.1371/journal.pcbi.1003963
Khaligh-Razavi, 2014, Deep supervised, but not unsupervised, models may explain IT cortical representation, PLoS Comput Biol, 10, e1003915, 10.1371/journal.pcbi.1003915
Lamme, 2000, The distinct modes of vision offered by feedforward and recurrent processing, Trends Neurosci, 23, 571, 10.1016/S0166-2236(00)01657-X
Gilbert, 2013, Top-down influences on visual processing, Nat Rev Neurosci, 14, 350, 10.1038/nrn3476
Bullier, 2001, The role of feedback connections in shaping the responses of visual cortical neurons, Prog Brain Res, 134, 193, 10.1016/S0079-6123(01)34014-1
Callaway, 2004, Feedforward, feedback and inhibitory connections in primate visual cortex, Neural Networks, 17, 625, 10.1016/j.neunet.2004.04.004
Fujita, 1992, Columns for visual features of objects in monkey inferotemporal cortex, Nature, 360, 343, 10.1038/360343a0
Ito, 1994, Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey, Cereb Cortex, 14, 499, 10.1093/cercor/4.5.499
Tanifuji, 2006, Representation of object images by combinations of visual features in the macaque inferior temporal cortex, Novartis Found Symp, 270, 217
Tanaka, 1991, Coding visual images of objects in the inferotemporal cortex of the macaque monkey, J Neurophysiol, 66, 170, 10.1152/jn.1991.66.1.170
Yamane, 2006, Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex, J Neurophysiol, 96, 3147, 10.1152/jn.01224.2005
Yamane, 2008, A neural code for three-dimensional object shape in macaque inferotemporal cortex, Nat Neurosci, 11, 1352, 10.1038/nn.2202
Biederman, 1987, Recognition-by-components: a theory of human image understanding, Psychol Rev, 94, 115, 10.1037/0033-295X.94.2.115
Turk, 1991, Eigenfaces for recognition, J Cogn Neurosci, 3, 71, 10.1162/jocn.1991.3.1.71
Latimer, 1997, Some remarks on wholes, parts and their perception, Psycoloquy, 8
Tsunoda, 2001, Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns, Nat Neurosci, 4, 832, 10.1038/90547
Wang, 1996, Optical imaging of functional organization in the monkey inferotemporal cortex, Science, 272, 1665, 10.1126/science.272.5268.1665
Sato, 2009, Cortical columnar organization is reconsidered in inferior temporal cortex, Cereb Cortex, 19, 1870, 10.1093/cercor/bhn218
Tanaka, 1993, Neuronal mechanisms of object recognition, Science, 262, 685, 10.1126/science.8235589
Sato, 2013, Object representation in inferior temporal cortex is organized hierarchically in a mosaic-like structure, J Neurosci, 33, 16642, 10.1523/JNEUROSCI.5557-12.2013
Tsao, 2006, A cortical region consisting entirely of face-selective cells, Science, 311, 670, 10.1126/science.1119983
Tsao, 2014, The macaque face patch system: a window into object representation, Cold Spring Harb Symp Quant Biol, 79, 109, 10.1101/sqb.2014.79.024950
Kornblith, 2013, A network for scene processing in the macaque temporal lobe, Neuron, 79, 766, 10.1016/j.neuron.2013.06.015
Popivanov, 2014, Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch, J Neurosci, 34, 95, 10.1523/JNEUROSCI.2748-13.2014
Janssens, 2014, Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex, J Neurosci, 34, 10156, 10.1523/JNEUROSCI.2914-13.2013
Popivanov, 2015, Tolerance of macaque middle STS body patch neurons to shape-preserving stimulus transformations, J Cogn Neurosci, 27, 1001, 10.1162/jocn_a_00762
Lafer-Sousa, 2013, Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex, Nat Neurosci, 16, 1870, 10.1038/nn.3555
Verhoef, 2015, Functional architecture for disparity in macaque inferior temporal cortex and its relationship to the architecture for faces, color, scenes, and visual field, J Neurosci, 35, 6952, 10.1523/JNEUROSCI.5079-14.2015
Harada, 2009, Distribution of colour-selective activity in the monkey inferior temporal cortex revealed by functional magnetic resonance imaging, Eur J Neurosci, 30, 1960, 10.1111/j.1460-9568.2009.06995.x
Okazawa, 2012, Selective responses to specular surfaces in the macaque visual cortex revealed by fMRI, Neuroimage, 63, 1321, 10.1016/j.neuroimage.2012.07.052
Nishio, 2014, Perceptual gloss parameters are encoded by population responses in the monkey inferior temporal cortex, J Neurosci, 34, 11143, 10.1523/JNEUROSCI.1451-14.2014
Chklovskii, 2004, Maps in the brain: what can we learn from them?, Annu Rev Neurosci, 27, 369, 10.1146/annurev.neuro.27.070203.144226
Kiani, 2007, Object category structure in response patterns of neuronal population in monkey inferior temporal cortex, J Neurophysiol, 97, 4296, 10.1152/jn.00024.2007
Edelman, 1999
DiCarlo, 2007, Untangling invariant object recognition, Trends Cogn Sci, 11, 333, 10.1016/j.tics.2007.06.010
Edelman, 1998, Representation is representation of similarities, Behav Brain Sci, 21, 449, 10.1017/S0140525X98001253
Lee, 2007
Lehky, 2014, Dimensionality of object representations in monkey inferotemporal cortex, Neural Comput, 26, 2135, 10.1162/NECO_a_00648
Cahalane, 2012, Systematic, balancing gradients in neuron density and number across the primate isocortex, Front Neuroanat, 6, 28, 10.3389/fnana.2012.00028
Kobatake, 1998, Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys, J Neurophysiol, 80, 324, 10.1152/jn.1998.80.1.324
Op de Beeck, 2010, The neural basis of visual object, learning, Trends Cogn Sci, 14, 22, 10.1016/j.tics.2009.11.002
Lehky, 2011, Statistics of visual responses in primate inferotemporal cortex to object stimuli, J Neurophysiol, 106, 1097, 10.1152/jn.00990.2010
Newell, 2005, The interaction of shape- and location-based priming in object categorisation: evidence for a hybrid ‘what + where’ representation stage, Vision Res, 45, 2065, 10.1016/j.visres.2005.02.021
Edelman, 2003, Towards structural systematicity in distributed, statically bound visual representations, Cogn Sci, 27, 73, 10.1207/s15516709cog2701_3
Kravitz, 2008, How position dependent is visual object recognition?, Trends Cogn Sci, 12, 114, 10.1016/j.tics.2007.12.006
DiCarlo, 2003, Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position, J Neurophysiol, 89, 3264, 10.1152/jn.00358.2002
Op de Beeck, 2000, Spatial sensitivity of macaque inferior temporal neurons, J Comp Neurol, 426, 505, 10.1002/1096-9861(20001030)426:4<505::AID-CNE1>3.0.CO;2-M
Sereno, 2011, Population coding of visual space: comparison of spatial representations in dorsal and ventral pathways, Front Comput Neurosci, 4, 159, 10.3389/fncom.2010.00159
Lehky, 2013, Population coding and the labeling problem: extrinsic versus intrinsic representations, Neural Comput, 25, 2235, 10.1162/NECO_a_00486
Lehky, 2011, Population coding of visual space: modeling., Front Comput Neurosci, 4, 155, 10.3389/fncom.2010.00155
Collins, 2014, Knowledge is power: how conceptual knowledge transforms visual cognition, Psychon Bull Rev, 21, 843, 10.3758/s13423-013-0564-3
Albright, 2012, On the perception of probable things: neural substrates of associative memory, imagery, and perception, Neuron, 74, 227, 10.1016/j.neuron.2012.04.001
Borra, 2010, Cortical connections to area TE in monkey: hybrid modular and distributed organization, Cereb Cortex, 20, 257, 10.1093/cercor/bhp096
Lavenex, 2002, Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex, J Comp Neurol, 447, 394, 10.1002/cne.10243
Higuchi, 1996, Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions, Proc Natl Acad Sci U S A, 93, 739, 10.1073/pnas.93.2.739
Peng, 2008, Shape selectivity in primate frontal eye field, J Neurophysiol, 100, 796, 10.1152/jn.01188.2007
Asaad, 2000, Task-specific neural activity in the primate prefrontal cortex, J Neurophysiol, 84, 451, 10.1152/jn.2000.84.1.451
Lehky, 2007, Enhancement of object representations in primate perirhinal cortex during a visual working-memory task, J Neurophysiol, 97, 1298, 10.1152/jn.00167.2006
Naya, 2003, Forward processing of long-term associative memory in monkey inferotemporal cortex, J Neurosci, 23, 2861, 10.1523/JNEUROSCI.23-07-02861.2003
Moran, 1985, Selective attention gates visual processing in the extrastriate cortex, Science, 229, 782, 10.1126/science.4023713
Desimone, 1995, Neural mechanisms of selective visual attention, Annu Rev Neurosci, 18, 193, 10.1146/annurev.ne.18.030195.001205
Zhang, 2011, Object decoding with attention in inferior temporal cortex, Proc Natl Acad Sci U S A, 108, 8850, 10.1073/pnas.1100999108
Monosov, 2011, The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search, J Neurosci, 31, 15956, 10.1523/JNEUROSCI.2995-11.2011
Hamker, 2005, The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement, Cereb Cortex, 15, 431, 10.1093/cercor/bhh146
Monosov, 2010, Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search, Proc Natl Acad Sci U S A, 107, 13105, 10.1073/pnas.1002870107
Monosov, 2009, Frontal eye field activity enhances object identification during covert visual search, J Neurophysiol, 102, 3656, 10.1152/jn.00750.2009
Moore, 2003, Selective gating of visual signals by microstimulation of frontal cortex, Nature, 421, 370, 10.1038/nature01341
Vogels, 1999, Categorization of complex visual images by rhesus monkeys. Part 2: Single-cell study, Eur J Neurosci, 11, 1239, 10.1046/j.1460-9568.1999.00531.x
Akrami, 2009, Converging neuronal activity in inferior temporal cortex during the classification of morphed stimuli, Cereb Cortex, 19, 760, 10.1093/cercor/bhn125
Meyers, 2008, Dynamic population coding of category information in inferior temporal and prefrontal cortex, J Neurophysiol, 100, 1407, 10.1152/jn.90248.2008
Freedman, 2001, Categorical representation of visual stimuli in the primate prefrontal cortex, Science, 291, 312, 10.1126/science.291.5502.312
Miller, 2003, Neural correlates of categories and concepts, Curr Opin Neurobiol, 13, 198, 10.1016/S0959-4388(03)00037-0
Minamimoto, 2010, Monkeys quickly learn and generalize visual categories without lateral prefrontal cortex, Neuron, 66, 501, 10.1016/j.neuron.2010.04.010
Buckley, 2010, Is top-down control from prefrontal cortex necessary for visual categorization?, Neuron, 66, 471, 10.1016/j.neuron.2010.05.012
Freedman, 2002, Visual categorization and the primate prefrontal cortex: neurophysiology and behavior, J Neurophysiol, 88, 929, 10.1152/jn.2002.88.2.929
McKee, 2014, Task dependence of visual and category representations in prefrontal and inferior temporal cortices, J Neurosci, 34, 16065, 10.1523/JNEUROSCI.1660-14.2014
Harth, 1987, The inversion of sensory processing by feedback pathways: a model of visual cognitive functions, Science, 237, 184, 10.1126/science.3603015
Mumford, 1991, On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop, Biol Cybern, 65, 135, 10.1007/BF00202389
Mumford, 1994, Neuronal architectures for pattern-theoretic problems, 125
Grossberg, 1994, A neural theory of attentive visual search: interactions of boundary, surface, spatial, and object representations, Psychol Rev, 101, 470, 10.1037/0033-295X.101.3.470
Grossberg, 2013, Adaptive Resonance Theory: how a brain learns to consciously attend, learn, and recognize a changing world, Neural Networks, 37, 1, 10.1016/j.neunet.2012.09.017
Ganis, 2007, Neuroimaging evidence for object model verification theory: role of prefrontal control in visual object categorization, Neuroimage, 34, 384, 10.1016/j.neuroimage.2006.09.008
Schendan, 2008, Where vision meets memory: prefrontal-posterior networks for visual object constancy during categorization and recognition, Cereb Cortex, 18, 1695, 10.1093/cercor/bhm197
Wyatte, 2014, Early recurrent feedback facilitates visual object recognition under challenging conditions, Front Pyschol, 5, 674
Wyatte, 2012, The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded, J Cogn Neurosci, 24, 2248, 10.1162/jocn_a_00282
Tang, 2014, Spatiotemporal dynamics underlying object completion in human ventral visual cortex, Neuron, 83, 736, 10.1016/j.neuron.2014.06.017
O’Reilly, 2013, Recurrent processing during object recognition, Front Pyschol, 4, 124
Murray, 1999, Perceptual–mnemonic functions of the perirhinal cortex, Trends Cogn Sci, 3, 142, 10.1016/S1364-6613(99)01303-0
Bussey, 2005, The perceptual-mnemonic/feature conjunction model of perirhinal cortex function, Q J Exp Psychol B, 58, 269, 10.1080/02724990544000004
Buckley, 1997, Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus, J Neurophysiol, 77, 587, 10.1152/jn.1997.77.2.587
Buckley, 1997, Impairment of visual object-discrimination learning after perirhinal cortex ablation, Behav Neurosci, 111, 467, 10.1037/0735-7044.111.3.467
Buckley, 1998, Perirhinal cortex ablation impairs visual object identification, J Neurosci, 18, 2268, 10.1523/JNEUROSCI.18-06-02268.1998
Buckley, 1998, Perirhinal cortex ablation impairs configural learning and paired-associate learning equally, Neuropsychologia, 36, 535, 10.1016/S0028-3932(97)00120-6
Buckley, 1998, Learning and transfer of object-reward associations and the role of the perirhinal cortex, Behav Neurosci, 112, 15, 10.1037/0735-7044.112.1.15
Buckley, 2001, Selective perceptual impairments after perirhinal cortex ablation, J Neurosci, 21, 9824, 10.1523/JNEUROSCI.21-24-09824.2001
Buckley, 2005, The role of the perirhinal cortex and hippocampus in learning, memory, and perception, Q J Exp Psychol B, 58, 246, 10.1080/02724990444000186
Buckley, 2006, Perirhinal cortical contributions to object perception, Trends Cogn Sci, 10, 100, 10.1016/j.tics.2006.01.008
Cowell, 2010, Functional dissociations within the ventral object processing pathway: cognitive modules or a hierarchical continuum?, J Cogn Neurosci, 22, 2460, 10.1162/jocn.2009.21373
Buffalo, 1999, Dissociation between the effects of damage to perirhinal cortex and area TE, Learn Mem, 6, 572, 10.1101/lm.6.6.572
Martin, 2016, Distributed category-specific recognition memory signals in human perirhinal cortex, Hippocampus, 10.1002/hipo.22531
Hirabayashi, 2014, Distinct neuronal interactions in anterior inferotemporal areas of macaque monkeys during retrieval of object association memory, J Neurosci, 34, 9377, 10.1523/JNEUROSCI.0600-14.2014
Kivisaari, 2012, Medial perirhinal cortex disambiguates confusable objects, Brain, 135, 3757, 10.1093/brain/aws277
Clarke, 2014, Object-specific semantic coding in human perirhinal cortex, J Neurosci, 34, 4766, 10.1523/JNEUROSCI.2828-13.2014
Barense, 2011, Perception and conception: temporal lobe activity during complex discriminations of familiar and novel faces and objects, J Cogn Neurosci, 23, 3052, 10.1162/jocn_a_00010
Taylor, 2006, Binding crossmodal object features in perirhinal cortex, Proc Natl Acad Sci U S A, 103, 8239, 10.1073/pnas.0509704103
Vitay, 2008, Sustained activities and retrieval in a computational model of the perirhinal cortex, J Cogn Neurosci, 20, 1993, 10.1162/jocn.2008.20147
Liu, 2000, Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules, J Neurophysiol, 83, 1677, 10.1152/jn.2000.83.3.1677
Kriegeskorte, 2008, Matching categorical object representations in inferior temporal cortex of man and monkey, Neuron, 60, 1126, 10.1016/j.neuron.2008.10.043
Tyler, 2013, Objects and categories: feature statistics and object processing in the ventral stream, J Cogn Neurosci, 25, 1723, 10.1162/jocn_a_00419
Linden, 2003, Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network, Neuroimage, 20, 1518, 10.1016/j.neuroimage.2003.07.021
Baldassi, 2013, Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons, PLoS Comput Biol, 9, e1003167, 10.1371/journal.pcbi.1003167
Clarke, 2011, The evolution of meaning: spatio-temporal dynamics of visual object recognition, J Cogn Neurosci, 23, 1887, 10.1162/jocn.2010.21544
Clarke, 2015, Dynamic information processing states revealed through neurocognitive models of object semantics, Lang Cogn Neurosci, 30, 409, 10.1080/23273798.2014.970652
Clarke, 2015, Predicting the time course of individual objects with MEG, Cereb Cortex, 25, 3602, 10.1093/cercor/bhu203
Mirpour, 2009, State-dependent effects of stimulus presentation duration on the temporal dynamics of neural responses in the inferotemporal cortex of macaque monkeys, J Neurophysiol, 102, 1790, 10.1152/jn.91197.2008
Sheinberg, 1997, The role of temporal cortical areas in perceptual organization, Proc Natl Acad Sci U S A, 94, 3408, 10.1073/pnas.94.7.3408
Lehky, 2011, Unmixing binocular signals, Front Human Neurosci, 5, 78, 10.3389/fnhum.2011.00078
Oliva, 2007, The role of context in object recognition, Trends Cogn Sci, 11, 520, 10.1016/j.tics.2007.09.009
Lehky, 2008, Spatial modulation of primate inferotemporal responses by eye position, PLoS ONE, 3, e3492, 10.1371/journal.pone.0003492
Sereno, 2014, Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates, Front Integr Neurosci, 8, 28, 10.3389/fnint.2014.00028
Zimmermann, 2014, Buildup of spatial information over time and across eye-movements, Behav Brain Res, 275, 281, 10.1016/j.bbr.2014.09.013
Larochelle, 2010, Learning to combine foveal glimpses with a third-order Boltzmann machine, Adv Neural Inform Proc Syst, 23, 1243
Ballard, 1991, Animate vision, Artif Intell, 48, 57, 10.1016/0004-3702(91)90080-4
Terzopoulos, 1997, Animat vision: active vision in artificial animals, Videre: J Comput Vis Res, 1, 2
Aloimonos, 1988, Active vision, Int J Comput Vis, 1, 333, 10.1007/BF00133571
Karpathy, 2015, Deep visual-semantic alignments for generating image descriptions
LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539
Bengio, 2013, Representation learning: a review and new perspectives, IEEE Trans Pattern Anal Mach Intell, 35, 1798, 10.1109/TPAMI.2013.50
Schmidhuber, 2015, Deep learning in neural networks: an overview, Neural Networks, 61, 85, 10.1016/j.neunet.2014.09.003
Lee, 2011, Unsupervised learning of hierarchical representations with convolutional deep belief networks, Comm ACM, 54, 95, 10.1145/2001269.2001295
Dura-Bernal, 2012, Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation, PLoS ONE, 7, e48216, 10.1371/journal.pone.0048216
O’Connor, 2013, Real-time classification and sensor fusion with a spiking deep belief network, Front Neurosci, 7, 178