Neural representation for object recognition in inferotemporal cortex

Current Opinion in Neurobiology - Tập 37 - Trang 23-35 - 2016
Sidney R Lehky1,2, Keiji Tanaka1
1Cognitive Brain Mapping Laboratory, RIKEN Brain Science Institute, Wako, Saitama, Japan
2Computational Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA

Tài liệu tham khảo

Perry, 2014, Feature integration and object representations along the dorsal stream visual hierarchy, Front Comput Neurosci, 8, 84, 10.3389/fncom.2014.00084 Sereno, 1998, Shape selectivity in primate lateral intraparietal cortex, Nature, 395, 500, 10.1038/26752 Lehky, 2007, Comparison of shape encoding in primate dorsal and ventral visual pathways, J Neurophysiol, 97, 307, 10.1152/jn.00168.2006 Konen, 2008, Two hierarchically organized neural systems for object information in human visual cortex, Nat Neurosci, 11, 224, 10.1038/nn2036 Theys, 2015, Shape representations in the primate dorsal visual stream, Front Comput Neurosci, 9, 43, 10.3389/fncom.2015.00043 Sereno, 2002, Three-dimensional shape representation in monkey cortex, Neuron, 33, 635, 10.1016/S0896-6273(02)00598-6 Tanaka, 1996, Inferotemporal cortex and object vision, Annu Rev Neurosci, 19, 109, 10.1146/annurev.ne.19.030196.000545 Kourtzi, 2011, Neural representations for object perception: structure, category, and adaptive coding, Annu Rev Neurosci, 34, 45, 10.1146/annurev-neuro-060909-153218 Tanaka, 2003, Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities, Cereb Cortex, 13, 90, 10.1093/cercor/13.1.90 Murata, 2000, Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP, J Neurophysiol, 83, 2580, 10.1152/jn.2000.83.5.2580 Premereur, 2015, Effective connectivity of depth-structure-selective patches in the lateral bank of the macaque intraparietal sulcus, PLoS Biol, 13, e1002072, 10.1371/journal.pbio.1002072 Miller, 2001, An integrative theory of prefrontal cortex function, Annu Rev Neurosci, 24, 167, 10.1146/annurev.neuro.24.1.167 Donoso, 2014, Human cognition. Foundations of human reasoning in the prefrontal cortex, Science, 344, 1481, 10.1126/science.1252254 Badre, 2008, Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes, Trends Cogn Sci, 12, 193, 10.1016/j.tics.2008.02.004 Mansouri, 2009, Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex, Nat Neurosci Rev, 10, 141, 10.1038/nrn2538 Matsumoto, 2004, The role of the medial prefrontal cortex in achieving goals, Curr Opin Neurobiol, 14, 178, 10.1016/j.conb.2004.03.005 Suzuki, 2014, The perirhinal cortex, Annu Rev Neurosci, 37, 39, 10.1146/annurev-neuro-071013-014207 Eichenbaum, 2007, The medial temporal lobe and recognition memory, Annu Rev Neurosci, 30, 123, 10.1146/annurev.neuro.30.051606.094328 Meunier, 1993, Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys, J Neurosci, 13, 5418, 10.1523/JNEUROSCI.13-12-05418.1993 Zola-Morgan, 1989, Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment, J Neurosci, 9, 4335 Graham, 2010, Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception, Neuropsychologia, 48, 831, 10.1016/j.neuropsychologia.2010.01.001 Ritchey, 2015, Cortico-hippocampal systems involved in memory and cognition: the PMAT framework, Prog Brain Res, 219, 45, 10.1016/bs.pbr.2015.04.001 Osada, 2008, Towards understanding of the cortical network underlying associative memory, Proc R Soc Lond Ser B: Biol Sci, 363, 2187, 10.1098/rstb.2008.2271 Liu, 2000, Learning motivational significance of visual cues for reward schedules requires rhinal cortex, Nat Neurosci, 3, 1307, 10.1038/81841 Mogami, 2006, Reward association affects neuronal responses to visual stimuli in macaque TE and perirhinal cortices, J Neurosci, 26, 6761, 10.1523/JNEUROSCI.4924-05.2006 Eradath, 2015, Time context of cue-outcome associations represented by neurons in perirhinal cortex, J Neurosci, 35, 4350, 10.1523/JNEUROSCI.4730-14.2015 Felleman, 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb Cortex, 1, 1, 10.1093/cercor/1.1.1 Kourtzi, 2001, Representation of perceived object shape by the human lateral occipital complex, Science, 293, 1506, 10.1126/science.1061133 Orban, 2004, Comparative mapping of higher visual areas in monkeys and humans, Trends Cogn Sci, 8, 315, 10.1016/j.tics.2004.05.009 Webster, 1991, Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys, J Neurosci, 11, 1095, 10.1523/JNEUROSCI.11-04-01095.1991 Saleem, 1996, Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey, J Neurosci, 16, 4757, 10.1523/JNEUROSCI.16-15-04757.1996 Yoshida, 2003, Anatomical organization of forward fiber projections from area TE to perirhinal neurons representing visual long-term memory in monkeys, Proc Natl Acad Sci U S A, 100, 4257, 10.1073/pnas.0736457100 Suzuki, 1994, Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents, J Comp Neurol, 350, 497, 10.1002/cne.903500402 Webster, 1994, Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys, Cereb Cortex, 4, 470, 10.1093/cercor/4.5.470 Yeterian, 2012, The cortical connectivity of the prefrontal cortex in the monkey brain, Cortex, 48, 58, 10.1016/j.cortex.2011.03.004 Ungerleider, 1989, Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys, Exp Brain Res, 76, 473, 10.1007/BF00248903 Kobatake, 1994, Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex, J Neurophysiol, 71, 856, 10.1152/jn.1994.71.3.856 Rust, 2010, Selectivity and tolerance (‘invariance’) both increase as visual information propagates from cortical area V4 to IT, J Neurosci, 30, 12978, 10.1523/JNEUROSCI.0179-10.2010 Ito, 1995, Size and position invariance of neuronal responses in monkey inferotemporal cortex, J Neurophysiol, 73, 218, 10.1152/jn.1995.73.1.218 Kravitz, 2013, The ventral visual pathway: an expanded neural framework for the processing of object quality, Trends Cogn Sci, 17, 26, 10.1016/j.tics.2012.10.011 Riesenhuber, 1999, Hierarchical models of object recognition in cortex, Nat Neurosci, 2, 1019, 10.1038/14819 Serre, 2007, A quantitative theory of immediate visual recognition, Prog Brain Res, 165, 33, 10.1016/S0079-6123(06)65004-8 Fukushima, 1980, Neocognitron A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biol Cybern, 36, 193, 10.1007/BF00344251 Fukushima, 1988, Neocognitron A hierarchical neural network capable of visual pattern recognition, Neural Networks, 1, 119, 10.1016/0893-6080(88)90014-7 LeCun, 1995, Convolutional networks for images, speech and time-series, 255 LeCun, 2010, Convolutional networks and applications in vision, 253 Ghodrati, 2012, How can selection of biologically inspired features improve the performance of a robust object recognition model?, PLoS ONE, 7, e32357, 10.1371/journal.pone.0032357 Ciresan, 2012, Multi-column deep neural networks for image classification, 3642 Serre, 2007, Robust object recognition with cortex-like mechanisms, IEEE Trans Pattern Anal Mach Intell, 29, 411, 10.1109/TPAMI.2007.56 Krizhevsky, 2012, ImageNet Classification with Deep Convolutional Neural Networks, 25, 1097 Robinson, 2015, Invariant visual object recognition: biologically plausible approaches, Biol Cybern, 109, 505, 10.1007/s00422-015-0658-2 Güçlü, 2015, Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream, J Neurosci, 35, 10005, 10.1523/JNEUROSCI.5023-14.2015 Li, 2008 Grünwald, 2008 Hung, 2005, Fast readout of object identity from macaque inferior temporal cortex, Science, 310, 863, 10.1126/science.1117593 Cadieu, 2014, Deep neural networks rival the representation of primate IT cortex for core visual object recognition, PLoS Comput Biol, 10, e1003963, 10.1371/journal.pcbi.1003963 Khaligh-Razavi, 2014, Deep supervised, but not unsupervised, models may explain IT cortical representation, PLoS Comput Biol, 10, e1003915, 10.1371/journal.pcbi.1003915 Lamme, 2000, The distinct modes of vision offered by feedforward and recurrent processing, Trends Neurosci, 23, 571, 10.1016/S0166-2236(00)01657-X Gilbert, 2013, Top-down influences on visual processing, Nat Rev Neurosci, 14, 350, 10.1038/nrn3476 Bullier, 2001, The role of feedback connections in shaping the responses of visual cortical neurons, Prog Brain Res, 134, 193, 10.1016/S0079-6123(01)34014-1 Callaway, 2004, Feedforward, feedback and inhibitory connections in primate visual cortex, Neural Networks, 17, 625, 10.1016/j.neunet.2004.04.004 Fujita, 1992, Columns for visual features of objects in monkey inferotemporal cortex, Nature, 360, 343, 10.1038/360343a0 Ito, 1994, Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey, Cereb Cortex, 14, 499, 10.1093/cercor/4.5.499 Tanifuji, 2006, Representation of object images by combinations of visual features in the macaque inferior temporal cortex, Novartis Found Symp, 270, 217 Tanaka, 1991, Coding visual images of objects in the inferotemporal cortex of the macaque monkey, J Neurophysiol, 66, 170, 10.1152/jn.1991.66.1.170 Yamane, 2006, Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex, J Neurophysiol, 96, 3147, 10.1152/jn.01224.2005 Yamane, 2008, A neural code for three-dimensional object shape in macaque inferotemporal cortex, Nat Neurosci, 11, 1352, 10.1038/nn.2202 Biederman, 1987, Recognition-by-components: a theory of human image understanding, Psychol Rev, 94, 115, 10.1037/0033-295X.94.2.115 Turk, 1991, Eigenfaces for recognition, J Cogn Neurosci, 3, 71, 10.1162/jocn.1991.3.1.71 Latimer, 1997, Some remarks on wholes, parts and their perception, Psycoloquy, 8 Tsunoda, 2001, Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns, Nat Neurosci, 4, 832, 10.1038/90547 Wang, 1996, Optical imaging of functional organization in the monkey inferotemporal cortex, Science, 272, 1665, 10.1126/science.272.5268.1665 Sato, 2009, Cortical columnar organization is reconsidered in inferior temporal cortex, Cereb Cortex, 19, 1870, 10.1093/cercor/bhn218 Tanaka, 1993, Neuronal mechanisms of object recognition, Science, 262, 685, 10.1126/science.8235589 Sato, 2013, Object representation in inferior temporal cortex is organized hierarchically in a mosaic-like structure, J Neurosci, 33, 16642, 10.1523/JNEUROSCI.5557-12.2013 Tsao, 2006, A cortical region consisting entirely of face-selective cells, Science, 311, 670, 10.1126/science.1119983 Tsao, 2014, The macaque face patch system: a window into object representation, Cold Spring Harb Symp Quant Biol, 79, 109, 10.1101/sqb.2014.79.024950 Kornblith, 2013, A network for scene processing in the macaque temporal lobe, Neuron, 79, 766, 10.1016/j.neuron.2013.06.015 Popivanov, 2014, Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch, J Neurosci, 34, 95, 10.1523/JNEUROSCI.2748-13.2014 Janssens, 2014, Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex, J Neurosci, 34, 10156, 10.1523/JNEUROSCI.2914-13.2013 Popivanov, 2015, Tolerance of macaque middle STS body patch neurons to shape-preserving stimulus transformations, J Cogn Neurosci, 27, 1001, 10.1162/jocn_a_00762 Lafer-Sousa, 2013, Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex, Nat Neurosci, 16, 1870, 10.1038/nn.3555 Verhoef, 2015, Functional architecture for disparity in macaque inferior temporal cortex and its relationship to the architecture for faces, color, scenes, and visual field, J Neurosci, 35, 6952, 10.1523/JNEUROSCI.5079-14.2015 Harada, 2009, Distribution of colour-selective activity in the monkey inferior temporal cortex revealed by functional magnetic resonance imaging, Eur J Neurosci, 30, 1960, 10.1111/j.1460-9568.2009.06995.x Okazawa, 2012, Selective responses to specular surfaces in the macaque visual cortex revealed by fMRI, Neuroimage, 63, 1321, 10.1016/j.neuroimage.2012.07.052 Nishio, 2014, Perceptual gloss parameters are encoded by population responses in the monkey inferior temporal cortex, J Neurosci, 34, 11143, 10.1523/JNEUROSCI.1451-14.2014 Chklovskii, 2004, Maps in the brain: what can we learn from them?, Annu Rev Neurosci, 27, 369, 10.1146/annurev.neuro.27.070203.144226 Kiani, 2007, Object category structure in response patterns of neuronal population in monkey inferior temporal cortex, J Neurophysiol, 97, 4296, 10.1152/jn.00024.2007 Edelman, 1999 DiCarlo, 2007, Untangling invariant object recognition, Trends Cogn Sci, 11, 333, 10.1016/j.tics.2007.06.010 Edelman, 1998, Representation is representation of similarities, Behav Brain Sci, 21, 449, 10.1017/S0140525X98001253 Lee, 2007 Lehky, 2014, Dimensionality of object representations in monkey inferotemporal cortex, Neural Comput, 26, 2135, 10.1162/NECO_a_00648 Cahalane, 2012, Systematic, balancing gradients in neuron density and number across the primate isocortex, Front Neuroanat, 6, 28, 10.3389/fnana.2012.00028 Kobatake, 1998, Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys, J Neurophysiol, 80, 324, 10.1152/jn.1998.80.1.324 Op de Beeck, 2010, The neural basis of visual object, learning, Trends Cogn Sci, 14, 22, 10.1016/j.tics.2009.11.002 Lehky, 2011, Statistics of visual responses in primate inferotemporal cortex to object stimuli, J Neurophysiol, 106, 1097, 10.1152/jn.00990.2010 Newell, 2005, The interaction of shape- and location-based priming in object categorisation: evidence for a hybrid ‘what + where’ representation stage, Vision Res, 45, 2065, 10.1016/j.visres.2005.02.021 Edelman, 2003, Towards structural systematicity in distributed, statically bound visual representations, Cogn Sci, 27, 73, 10.1207/s15516709cog2701_3 Kravitz, 2008, How position dependent is visual object recognition?, Trends Cogn Sci, 12, 114, 10.1016/j.tics.2007.12.006 DiCarlo, 2003, Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position, J Neurophysiol, 89, 3264, 10.1152/jn.00358.2002 Op de Beeck, 2000, Spatial sensitivity of macaque inferior temporal neurons, J Comp Neurol, 426, 505, 10.1002/1096-9861(20001030)426:4<505::AID-CNE1>3.0.CO;2-M Sereno, 2011, Population coding of visual space: comparison of spatial representations in dorsal and ventral pathways, Front Comput Neurosci, 4, 159, 10.3389/fncom.2010.00159 Lehky, 2013, Population coding and the labeling problem: extrinsic versus intrinsic representations, Neural Comput, 25, 2235, 10.1162/NECO_a_00486 Lehky, 2011, Population coding of visual space: modeling., Front Comput Neurosci, 4, 155, 10.3389/fncom.2010.00155 Collins, 2014, Knowledge is power: how conceptual knowledge transforms visual cognition, Psychon Bull Rev, 21, 843, 10.3758/s13423-013-0564-3 Albright, 2012, On the perception of probable things: neural substrates of associative memory, imagery, and perception, Neuron, 74, 227, 10.1016/j.neuron.2012.04.001 Borra, 2010, Cortical connections to area TE in monkey: hybrid modular and distributed organization, Cereb Cortex, 20, 257, 10.1093/cercor/bhp096 Lavenex, 2002, Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex, J Comp Neurol, 447, 394, 10.1002/cne.10243 Higuchi, 1996, Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions, Proc Natl Acad Sci U S A, 93, 739, 10.1073/pnas.93.2.739 Peng, 2008, Shape selectivity in primate frontal eye field, J Neurophysiol, 100, 796, 10.1152/jn.01188.2007 Asaad, 2000, Task-specific neural activity in the primate prefrontal cortex, J Neurophysiol, 84, 451, 10.1152/jn.2000.84.1.451 Lehky, 2007, Enhancement of object representations in primate perirhinal cortex during a visual working-memory task, J Neurophysiol, 97, 1298, 10.1152/jn.00167.2006 Naya, 2003, Forward processing of long-term associative memory in monkey inferotemporal cortex, J Neurosci, 23, 2861, 10.1523/JNEUROSCI.23-07-02861.2003 Moran, 1985, Selective attention gates visual processing in the extrastriate cortex, Science, 229, 782, 10.1126/science.4023713 Desimone, 1995, Neural mechanisms of selective visual attention, Annu Rev Neurosci, 18, 193, 10.1146/annurev.ne.18.030195.001205 Zhang, 2011, Object decoding with attention in inferior temporal cortex, Proc Natl Acad Sci U S A, 108, 8850, 10.1073/pnas.1100999108 Monosov, 2011, The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search, J Neurosci, 31, 15956, 10.1523/JNEUROSCI.2995-11.2011 Hamker, 2005, The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement, Cereb Cortex, 15, 431, 10.1093/cercor/bhh146 Monosov, 2010, Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search, Proc Natl Acad Sci U S A, 107, 13105, 10.1073/pnas.1002870107 Monosov, 2009, Frontal eye field activity enhances object identification during covert visual search, J Neurophysiol, 102, 3656, 10.1152/jn.00750.2009 Moore, 2003, Selective gating of visual signals by microstimulation of frontal cortex, Nature, 421, 370, 10.1038/nature01341 Vogels, 1999, Categorization of complex visual images by rhesus monkeys. Part 2: Single-cell study, Eur J Neurosci, 11, 1239, 10.1046/j.1460-9568.1999.00531.x Akrami, 2009, Converging neuronal activity in inferior temporal cortex during the classification of morphed stimuli, Cereb Cortex, 19, 760, 10.1093/cercor/bhn125 Meyers, 2008, Dynamic population coding of category information in inferior temporal and prefrontal cortex, J Neurophysiol, 100, 1407, 10.1152/jn.90248.2008 Freedman, 2001, Categorical representation of visual stimuli in the primate prefrontal cortex, Science, 291, 312, 10.1126/science.291.5502.312 Miller, 2003, Neural correlates of categories and concepts, Curr Opin Neurobiol, 13, 198, 10.1016/S0959-4388(03)00037-0 Minamimoto, 2010, Monkeys quickly learn and generalize visual categories without lateral prefrontal cortex, Neuron, 66, 501, 10.1016/j.neuron.2010.04.010 Buckley, 2010, Is top-down control from prefrontal cortex necessary for visual categorization?, Neuron, 66, 471, 10.1016/j.neuron.2010.05.012 Freedman, 2002, Visual categorization and the primate prefrontal cortex: neurophysiology and behavior, J Neurophysiol, 88, 929, 10.1152/jn.2002.88.2.929 McKee, 2014, Task dependence of visual and category representations in prefrontal and inferior temporal cortices, J Neurosci, 34, 16065, 10.1523/JNEUROSCI.1660-14.2014 Harth, 1987, The inversion of sensory processing by feedback pathways: a model of visual cognitive functions, Science, 237, 184, 10.1126/science.3603015 Mumford, 1991, On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop, Biol Cybern, 65, 135, 10.1007/BF00202389 Mumford, 1994, Neuronal architectures for pattern-theoretic problems, 125 Grossberg, 1994, A neural theory of attentive visual search: interactions of boundary, surface, spatial, and object representations, Psychol Rev, 101, 470, 10.1037/0033-295X.101.3.470 Grossberg, 2013, Adaptive Resonance Theory: how a brain learns to consciously attend, learn, and recognize a changing world, Neural Networks, 37, 1, 10.1016/j.neunet.2012.09.017 Ganis, 2007, Neuroimaging evidence for object model verification theory: role of prefrontal control in visual object categorization, Neuroimage, 34, 384, 10.1016/j.neuroimage.2006.09.008 Schendan, 2008, Where vision meets memory: prefrontal-posterior networks for visual object constancy during categorization and recognition, Cereb Cortex, 18, 1695, 10.1093/cercor/bhm197 Wyatte, 2014, Early recurrent feedback facilitates visual object recognition under challenging conditions, Front Pyschol, 5, 674 Wyatte, 2012, The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded, J Cogn Neurosci, 24, 2248, 10.1162/jocn_a_00282 Tang, 2014, Spatiotemporal dynamics underlying object completion in human ventral visual cortex, Neuron, 83, 736, 10.1016/j.neuron.2014.06.017 O’Reilly, 2013, Recurrent processing during object recognition, Front Pyschol, 4, 124 Murray, 1999, Perceptual–mnemonic functions of the perirhinal cortex, Trends Cogn Sci, 3, 142, 10.1016/S1364-6613(99)01303-0 Bussey, 2005, The perceptual-mnemonic/feature conjunction model of perirhinal cortex function, Q J Exp Psychol B, 58, 269, 10.1080/02724990544000004 Buckley, 1997, Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus, J Neurophysiol, 77, 587, 10.1152/jn.1997.77.2.587 Buckley, 1997, Impairment of visual object-discrimination learning after perirhinal cortex ablation, Behav Neurosci, 111, 467, 10.1037/0735-7044.111.3.467 Buckley, 1998, Perirhinal cortex ablation impairs visual object identification, J Neurosci, 18, 2268, 10.1523/JNEUROSCI.18-06-02268.1998 Buckley, 1998, Perirhinal cortex ablation impairs configural learning and paired-associate learning equally, Neuropsychologia, 36, 535, 10.1016/S0028-3932(97)00120-6 Buckley, 1998, Learning and transfer of object-reward associations and the role of the perirhinal cortex, Behav Neurosci, 112, 15, 10.1037/0735-7044.112.1.15 Buckley, 2001, Selective perceptual impairments after perirhinal cortex ablation, J Neurosci, 21, 9824, 10.1523/JNEUROSCI.21-24-09824.2001 Buckley, 2005, The role of the perirhinal cortex and hippocampus in learning, memory, and perception, Q J Exp Psychol B, 58, 246, 10.1080/02724990444000186 Buckley, 2006, Perirhinal cortical contributions to object perception, Trends Cogn Sci, 10, 100, 10.1016/j.tics.2006.01.008 Cowell, 2010, Functional dissociations within the ventral object processing pathway: cognitive modules or a hierarchical continuum?, J Cogn Neurosci, 22, 2460, 10.1162/jocn.2009.21373 Buffalo, 1999, Dissociation between the effects of damage to perirhinal cortex and area TE, Learn Mem, 6, 572, 10.1101/lm.6.6.572 Martin, 2016, Distributed category-specific recognition memory signals in human perirhinal cortex, Hippocampus, 10.1002/hipo.22531 Hirabayashi, 2014, Distinct neuronal interactions in anterior inferotemporal areas of macaque monkeys during retrieval of object association memory, J Neurosci, 34, 9377, 10.1523/JNEUROSCI.0600-14.2014 Kivisaari, 2012, Medial perirhinal cortex disambiguates confusable objects, Brain, 135, 3757, 10.1093/brain/aws277 Clarke, 2014, Object-specific semantic coding in human perirhinal cortex, J Neurosci, 34, 4766, 10.1523/JNEUROSCI.2828-13.2014 Barense, 2011, Perception and conception: temporal lobe activity during complex discriminations of familiar and novel faces and objects, J Cogn Neurosci, 23, 3052, 10.1162/jocn_a_00010 Taylor, 2006, Binding crossmodal object features in perirhinal cortex, Proc Natl Acad Sci U S A, 103, 8239, 10.1073/pnas.0509704103 Vitay, 2008, Sustained activities and retrieval in a computational model of the perirhinal cortex, J Cogn Neurosci, 20, 1993, 10.1162/jocn.2008.20147 Liu, 2000, Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules, J Neurophysiol, 83, 1677, 10.1152/jn.2000.83.3.1677 Kriegeskorte, 2008, Matching categorical object representations in inferior temporal cortex of man and monkey, Neuron, 60, 1126, 10.1016/j.neuron.2008.10.043 Tyler, 2013, Objects and categories: feature statistics and object processing in the ventral stream, J Cogn Neurosci, 25, 1723, 10.1162/jocn_a_00419 Linden, 2003, Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network, Neuroimage, 20, 1518, 10.1016/j.neuroimage.2003.07.021 Baldassi, 2013, Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons, PLoS Comput Biol, 9, e1003167, 10.1371/journal.pcbi.1003167 Clarke, 2011, The evolution of meaning: spatio-temporal dynamics of visual object recognition, J Cogn Neurosci, 23, 1887, 10.1162/jocn.2010.21544 Clarke, 2015, Dynamic information processing states revealed through neurocognitive models of object semantics, Lang Cogn Neurosci, 30, 409, 10.1080/23273798.2014.970652 Clarke, 2015, Predicting the time course of individual objects with MEG, Cereb Cortex, 25, 3602, 10.1093/cercor/bhu203 Mirpour, 2009, State-dependent effects of stimulus presentation duration on the temporal dynamics of neural responses in the inferotemporal cortex of macaque monkeys, J Neurophysiol, 102, 1790, 10.1152/jn.91197.2008 Sheinberg, 1997, The role of temporal cortical areas in perceptual organization, Proc Natl Acad Sci U S A, 94, 3408, 10.1073/pnas.94.7.3408 Lehky, 2011, Unmixing binocular signals, Front Human Neurosci, 5, 78, 10.3389/fnhum.2011.00078 Oliva, 2007, The role of context in object recognition, Trends Cogn Sci, 11, 520, 10.1016/j.tics.2007.09.009 Lehky, 2008, Spatial modulation of primate inferotemporal responses by eye position, PLoS ONE, 3, e3492, 10.1371/journal.pone.0003492 Sereno, 2014, Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates, Front Integr Neurosci, 8, 28, 10.3389/fnint.2014.00028 Zimmermann, 2014, Buildup of spatial information over time and across eye-movements, Behav Brain Res, 275, 281, 10.1016/j.bbr.2014.09.013 Larochelle, 2010, Learning to combine foveal glimpses with a third-order Boltzmann machine, Adv Neural Inform Proc Syst, 23, 1243 Ballard, 1991, Animate vision, Artif Intell, 48, 57, 10.1016/0004-3702(91)90080-4 Terzopoulos, 1997, Animat vision: active vision in artificial animals, Videre: J Comput Vis Res, 1, 2 Aloimonos, 1988, Active vision, Int J Comput Vis, 1, 333, 10.1007/BF00133571 Karpathy, 2015, Deep visual-semantic alignments for generating image descriptions LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539 Bengio, 2013, Representation learning: a review and new perspectives, IEEE Trans Pattern Anal Mach Intell, 35, 1798, 10.1109/TPAMI.2013.50 Schmidhuber, 2015, Deep learning in neural networks: an overview, Neural Networks, 61, 85, 10.1016/j.neunet.2014.09.003 Lee, 2011, Unsupervised learning of hierarchical representations with convolutional deep belief networks, Comm ACM, 54, 95, 10.1145/2001269.2001295 Dura-Bernal, 2012, Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation, PLoS ONE, 7, e48216, 10.1371/journal.pone.0048216 O’Connor, 2013, Real-time classification and sensor fusion with a spiking deep belief network, Front Neurosci, 7, 178