Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation

Nature Energy - Tập 4 Số 7 - Trang 585-593
Yan Jiang1, Longbin Qiu1, Emilio J. Juárez‐Pérez1, Luis K. Ono1, Zhanhao Hu1, Zonghao Liu1, Zhifang Wu1, Lingqiang Meng1, Qijing Wang1, Yabing Qi1
1Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Best Research Cell Efficiencies (NREL, 2019); www.nrel.gov/pv/cell-efficiency.html

Green, M. A. et al. Solar cell efficiency tables (version 53). Prog. Photovolt. Res. Appl. 27, 3–12 (2019).

Correa-Baena, J. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

Park, N.-G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016).

Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy 3, 68–74 (2018).

Ono, L. K., Qi, Y. B. & Liu, S. Z. Progress toward stable lead halide perovskite solar cells. Joule 2, 1961–1990 (2018).

Park, N., Huang, J. & Qi, Y. B. Themed issue on perovskite solar cells: research on metal halide perovskite solar cells towards deeper understanding, upscalable fabrication, long-term stability and Pb-free alternatives. Sustain. Energy Fuels 2, 2378–2380 (2018).

Juarez-Perez, E. J. et al. Photo-, thermal-decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6, 9604–9612 (2018).

Wang, S., Jiang, Y., Juarez-Perez, E. J., Ono, L. K. & Qi, Y. B. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 16195 (2016).

Juarez-Perez, E. J., Hawash, Z., Raga, S. R., Ono, L. K. & Qi, Y. B. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9, 3406–3410 (2016).

Rajagopal, A., Yao, K. & Jen, A. K. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater. 30, 1800455 (2018).

Ju, M. et al. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule 2, 1231–1241 (2018).

Abate, A. Perovskite solar cells go lead free. Joule 1, 659–664 (2018).

Shi, Z. J. et al. Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 26, 1605005 (2017).

Jiang, S., Wang, K., Zhang, H., Ding, Y. & Yu, Q. Encapsulation of PV modules using ethylene vinyl acetate copolymer as the encapsulant. Macromol. React. Eng. 9, 522–529 (2015).

Manufacture of a CIGS Solar Module (Soltecture, 2018); www.soltecture.com/technology/production-since-2003/manufacturing-processes.html

Hirata, M. K., Freitas, J. N., Santos, T. E. A., Mammana, V. P. & Nogueira, A. F. Assembly considerations for dye-sensitized solar modules with polymer gel electrolyte. Ind. Eng. Chem. Res. 55, 10278–10285 (2016).

Wang, Z. et al. Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv. Mater. 29, 1604186 (2017).

Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

Jiang, Y. et al. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Adv. Funct. Mater. 28, 1703835 (2018).

Kalista, S. J. Jr Self-healing of Thermoplastic Poly(ethylene-co-methacrylic Acid) Copolymers Following Projectile Puncture. Masters Thesis, Virginia Tech (2003).

Lertngim, A. et al. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation. R. Soc. Open Sci. 4, 170792 (2017).

Approval Standard for Rigid Photovoltaic Modules (FM 44787) (FM Approvals, 2018); www.fmapprovals.com/products-we-certify/understanding-the-benefits/fm-approved-photovoltaic-modules

Solar Resource Information (NREL, 2018); www.nrel.gov/rredc/solar_resource.html

Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015).

Mathiak, G. et al. PV module damages caused by hail impact field experience and lab tests. In 31st European Photovoltaic Solar Energy Conference and Exhibition 1915–1919 (EU PVCSE, 2015).

Leyden, M. R., Jiang, Y. & Qi, Y. B. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. J. Mater. Chem. A 4, 13125–13132 (2016).

Pantic, L. S. et al. The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia. Energy 109, 38–48 (2016).

Espinosa, N., Zimmermann, Y., Benatto, G. A. R., Lenz, M. & Krebs, F. C. Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil. Energy Environ. Sci. 9, 1674–1680 (2016).

Serrano-Lujan, L. et al. Tin- and lead-based perovskite solar cells under scrutiny: an environmental perspective. Adv. Energy Mater. 5, 1501119 (2015).

Hauck, M., Ligthart, T., Schaap, M., Boukris, E. & Brouwer, D. Environmental benefits of reduced electricity use exceed impacts from lead use for perovskite based tandem solar cell. Renew. Energy 111, 906–913 (2017).

Celik, I. et al. Life cycle assessment (LCA) of perovskite PV cells projected from lab to fab. Sol. Energy Mater. Sol. Cells 156, 157–169 (2016).

Celik, I., Song, Z., Phillips, A. B., Heben, M. J. & Apul, D. Life cycle analysis of metals in emerging photovoltaic (PV) technologies: a modeling approach to estimate use phase leaching. J. Clean. Prod. 186, 632–639 (2018).

Celik, I. et al. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy Environ. Sci. 10, 1874–1884 (2017).

Babayigit, A. et al. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6, 18721 (2016).

Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

Lv, T. et al. Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry. Small 13, 1503402 (2017).

Holzhey, P. & Saliba, M. A full overview of international standards assessing the long-term stability of perovskite solar cells. J. Mater. Chem. A 6, 21794–21808 (2018).

Water in the Atmosphere (Met Office, 2007); https://web.archive.org/web/20120114162401/http://www.metoffice.gov.uk/media/pdf/4/1/No._03_-_Water_in_the_Atmosphere.pdf