Flies and humans share a motion estimation strategy that exploits natural scene statistics

Nature Neuroscience - Tập 17 Số 2 - Trang 296-303 - 2014
Damon A. Clark1, James E. Fitzgerald2, Justin Ales3, Daryl M. Gohl4, Marion Silies5, Anthony M. Norcia6, Thomas R. Clandinin5
11] Department of Neurobiology, Stanford University, Stanford, California, USA. [2] [3].
21] Department of Physics, Stanford University, Stanford, California, USA. [2] [3].
31] Department of Psychology, Stanford University, Stanford, California, USA. [2] [3].
4Department of Neurobiology, Stanford University, Stanford, California, USA
5Dept. of Neurobiology, Stanford University, Stanford, USA
6Department of Psychology, Stanford University, Stanford, California USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Field, D.J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987).

Ruderman, D.L. & Bialek, W. Statistics of natural images: scaling in the woods. Phys. Rev. Lett. 73, 814–817 (1994).

Simoncelli, E.P. & Olshausen, B.A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216 (2001).

Hassenstein, B. & Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. 11, 513–524 (1956).

Adelson, E.H. & Bergen, J. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

Fitzgerald, J.E., Katsov, A.Y., Clandinin, T.R. & Schnitzer, M.J. Symmetries in stimulus statistics shape the form of visual motion estimators. Proc. Natl. Acad. Sci. USA 108, 12909–12914 (2011).

Anderson, J.M.M. & Giannakis, G.B. Image motion estimation algorithms using cumulants. IEEE Trans. Image Process. 4, 346–357 (1995).

Sayrol, E., Gasull, A. & Fonollosa, J.R. Motion estimation using higher order statistics. IEEE Trans. Image Process. 5, 1077–1084 (1996).

Rust, N.C., Mante, V., Simoncelli, E.P. & Movshon, J.A. How MT cells analyze the motion of visual patterns. Nat. Neurosci. 9, 1421–1431 (2006).

Borst, A., Haag, J. & Reiff, D.F. Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010).

van Santen, J.P.H. & Sperling, G. Elaborated reichardt detectors. J. Opt. Soc. Am. A 2, 300–321 (1985).

Theobald, J.C., Duistermars, B.J., Ringach, D.L. & Frye, M.A. Flies see second-order motion. Curr. Biol. 18, R464–R465 (2008).

Zanker, J.M. Theta motion: a paradoxical stimulus to explore higher order motion extraction. Vision Res. 33, 553–569 (1993).

Hu, Q. & Victor, J.D. A set of high-order spatiotemporal stimuli that elicit motion and reverse-phi percepts. J. Vis. 10, 9.1–9.16 (2010).

Lu, Z.L. & Sperling, G. Three-systems theory of human visual motion perception: review and update. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 2331–2370 (2001).

Victor, J.D. & Conte, M.M. Evoked potential and psychophysical analysis of Fourier and non-Fourier motion mechanisms. Vis. Neurosci. 9, 105–123 (1992).

Geisler, W.S. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59, 167–192 (2008).

Dror, R.O., O'Carroll, D.C. & Laughlin, S.B. Accuracy of velocity estimation by Reichardt correlators. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 241–252 (2001).

van Hateren, J.H. & van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Biol. Sci. 265, 359–366 (1998).

Stocker, A.A. & Simoncelli, E.P. Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9, 578–585 (2006).

Katsov, A.Y. & Clandinin, T. Motion processing streams in Drosophila are behaviorally specialized. Neuron 59, 322–335 (2008).

Joesch, M., Schnell, B., Raghu, S., Reiff, D. & Borst, A. ON and OFF pathways in Drosophila motion vision. Nature 468, 300–304 (2010).

Clark, D.A., Bursztyn, L., Horowitz, M.A., Schnitzer, M.J. & Clandinin, T.R. Defining the computational structure of the motion detector in Drosophila. Neuron 70, 1165–1177 (2011).

Silies, M. et al. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79, 111–127 (2013).

Buchner, E. Elementary movement detectors in an insect visual system. Biol. Cybern. 24, 85–101 (1976).

Tuthill, J.C., Chiappe, M.E. & Reiser, M.B. Neural correlates of illusory motion perception in Drosophila. Proc. Natl. Acad. Sci. USA 108, 9685–9690 (2011).

Eichner, H., Joesch, M., Schnell, B., Reiff, D.F. & Borst, A. Internal structure of the fly elementary motion detector. Neuron 70, 1155–1164 (2011).

Tuthill, J.C., Nern, A., Holtz, S.L., Rubin, G.M. & Reiser, M.B. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79, 128–140 (2013).

Westheimer, G. The ON-OFF dichotomy in visual processing: From receptors to perception. Prog. Retin. Eye Res. 26, 636–648 (2007).

Ales, J.M. & Norcia, A.M. Assessing direction-specific adaptation using the steady-state visual evoked potential: results from EEG source imaging. J. Vis. 9, 8 (2009).

Moulden, B. & Begg, H. Some tests of the Marr-Ullman model of movement detection. Perception 15, 139 (1986).

Mather, G., Moulden, B. & O'Halloran, A. Polarity-specific adaptation to motion in the human visual system. Vision Res. 31, 1013–1019 (1991).

Emerson, R.C., Bergen, J.R. & Adelson, E.H. Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 32, 203–218 (1992).

Nishida, S.y. Advancement of motion psychophysics: review 2001–2010. J. Vis. 11, 11 (2011).

Quenzer, T. & Zanker, J. Visual detection of paradoxical motion in flies. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 169, 331–340 (1991).

Ilg, U.J. & Churan, J. Motion perception without explicit activity in areas MT and MST. J. Neurophysiol. 92, 1512–1523 (2004).

Hedges, J.H. et al. Dissociation of neuronal and psychophysical responses to local and global motion. Curr. Biol. 21, 2023–2028 (2011).

Ratliff, C.P., Borghuis, B.G., Kao, Y.-H., Sterling, P. & Balasubramanian, V. Retina is structured to process an excess of darkness in natural scenes. Proc. Natl. Acad. Sci. USA 107, 17368–17373 (2010).

Barlow, H.B. & Levick, W.R. The mechanism of directionally selective units in rabbit's retina. J. Physiol. (Lond.) 178, 477 (1965).

Ibn-elhaj, E., Aboutajdine, D., Pateux, S. & Morin, L. HOS-based method of global motion estimation for noisy image sequences. Electron. Lett. 35, 1320–1322 (1999).

Schiller, P.H., Finlay, B.L. & Volman, S.F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysiol. 39, 1288 (1976).

Potetz, B. & Lee, T.S. Statistical correlations between two-dimensional images and three-dimensional structures in natural scenes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1292–1303 (2003).

Wiederman, S.D., Shoemaker, P.A. & O'Carroll, D.C. A model for the detection of moving targets in visual clutter inspired by insect physiology. PLoS ONE 3, e2784 (2008).

Poggio, T. & Reichardt, W. Visual control of orientation behaviour in the fly. Q. Rev. Biophys. 9, 377–438 (1976).

Card, G. & Dickinson, M.H. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).

Harris, J.M. & Parker, A.J. Independent neural mechanisms for bright and dark information in binocular stereopsis. Nature 374, 808–811 (1995).

Samonds, J.M., Potetz, B.R. & Lee, T.S. Relative luminance and binocular disparity preferences are correlated in macaque primary visual cortex, matching natural scene statistics. Proc. Natl. Acad. Sci. USA 109, 6313–6318 (2012).

Bialek, W. Physical limits to sensation and perception. Annu. Rev. Biophys. Biophys. Chem. 16, 455–478 (1987).

Laughlin, S.B. Energy as a constraint on the coding and processing of sensory information. Curr. Opin. Neurobiol. 11, 475–480 (2001).

Laughlin, S.B. & Sejnowski, T.J. Communication in neuronal networks. Science 301, 1870–1874 (2003).

Potters, M. & Bialek, W. Statistical mechanics and visual signal processing. J. Phys. I 4, 1755–1775 (1994).

Juusola, M., Uusitalo, R. & Weckström, M. Transfer of graded potentials at the photoreceptor-interneuron synapse. J. Gen. Physiol. 105, 117 (1995).

Gohl, D.M. et al. A versatile in vivo system for directed dissection of gene expression patterns. Nat. Methods 8, 231–237 (2011).

Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

Stavenga, D.G. Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 189, 189–202 (2003).

Palomares, M., Ales, J.M., Wade, A.R., Cottereau, B.R. & Norcia, A.M. Distinct effects of attention on the neural responses to form and motion processing: A SSVEP source-imaging study. J. Vis. 12, 15 (2012).

Berens, P. CircStat: A MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

Ales, J.M., Farzin, F., Rossion, B. & Norcia, A.M. An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response. J. Vis. 12, 18 (2012).

Gardner, M. Mathematical games: the fantastic combinations of John Conway's new solitaire game, 'life'. Sci. Am. 223, 120–123 (1970).