Weakly almost periodic functions on semisimple Lie groups

Springer Science and Business Media LLC - Tập 88 - Trang 55-68 - 1979
William A. Veech1
1Department of Mathematics Rice University, School of Natural Sciences, Houston, USA

Tóm tắt

IfG is a semisimple analytic group with finite center, it is proved thatG admits only the “obvious” weakly almost periodic functions. The analysis yields also an intrinsic proof of Moore's ergodicity theorem [7].

Tài liệu tham khảo

De Leeuw, K., andI. Glicksberg: Applications of almost periodic compactifications. Acta Math.105, 63–67 (1961). Eberlein, W. F.: Abstract ergodic theorems and weakly almost periodic functions. Trans. Amer. Math. Soc.67, 217–240 (1949). Godement, R.: Les fonctions de type positif et la théorie des groupes. Trans. Amer. Math. Soc.63, 1–84 (1948). Grothendieck, A.: Critères de compacité dans les espaces fonctionnels généraux. Amer. J. Math.74, 168–186 (1952). Helgason, S.: Differential Geometry and Symmetric Spaces. New York: Academic Press. 1962. Moore, C.: Compactifications of symmetric spaces. Amer. J. Math.86, 201–218 (1964). Moore, C.: Ergodicity of flows on homogeneous spaces. Amer. J. Math.88, 154–178 (1966). Ryll-Nardzewski, C.: On fixed points of semigroups of endomorphisms of linear spaces. Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part I, pp. 55–61. Berkeley, Calif: Univ. of California Press. 1967. Veech, W. A.: A fixed point theorem free approach to weak almost periodicity. Trans. Amer. Math. Soc.177, 353–362 (1973). Warner, G.: Harmonic Analysis on Semi-Simple Lie Groups. Vols. I and II. Berlin-Heidelberg-New York: Springer. 1972.