Site-Specific Proteomic Mapping Identifies Selectively Modified Regulatory Cysteine Residues in Functionally Distinct Protein Networks

Chemistry & Biology - Tập 22 - Trang 965-975 - 2015
Neal S. Gould1, Perry Evans2, Pablo Martínez-Acedo3, Stefano M. Marino4, Vadim N. Gladyshev5, Kate S. Carroll3, Harry Ischiropoulos1,6
1Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
2Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
3Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
4Department of Agricultural Biotechnology, Akdeniz University, Antalya 07985, Turkey
5Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
6Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

Tài liệu tham khảo

Alegre-Cebollada, 2014, S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding, Cell, 156, 1235, 10.1016/j.cell.2014.01.056 Benhar, 2010, Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach, Biochemistry, 49, 6963, 10.1021/bi100619k Brandes, 2009, Thiol-based redox switches in eukaryotic proteins, Antioxid. Redox Signal., 11, 997, 10.1089/ars.2008.2285 Britto, 2002, The local electrostatic environment determines cysteine reactivity of tubulin, J. Biol. Chem., 277, 29018, 10.1074/jbc.M204263200 Chouchani, 2013, Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I, Nat. Med., 19, 753, 10.1038/nm.3212 Conway, 2004, Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme, Biochemistry, 43, 7356, 10.1021/bi0498050 Dalle-Donne, 2007, S-glutathionylation in protein redox regulation, Free Radic. Biol. Med., 43, 883, 10.1016/j.freeradbiomed.2007.06.014 Denu, 1998, Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation, Biochemistry, 37, 5633, 10.1021/bi973035t Doulias, 2010, Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation, Proc. Natl. Acad. Sci. USA, 107, 16958, 10.1073/pnas.1008036107 Doulias, 2013, Mass spectrometry-based identification of S-nitrosocysteine in vivo using organic mercury assisted enrichment, Methods, 62, 165, 10.1016/j.ymeth.2012.10.009 Doulias, 2013, Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation, Sci. Signal., 6, rs1, 10.1126/scisignal.2003252 Finkel, 2011, Signal transduction by reactive oxygen species, J. Cell Biol., 194, 7, 10.1083/jcb.201102095 Groitl, 2014, Thiol-based redox switches, Biochim. Biophys. Acta, 1844, 1335, 10.1016/j.bbapap.2014.03.007 Hagel, 2011, Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine, Nat. Chem. Biol., 7, 22, 10.1038/nchembio.492 Hamnell-Pamment, 2005, Determination of site-specificity of S-glutathionylated cellular proteins, Biochem. Biophys. Res. Commun., 332, 362, 10.1016/j.bbrc.2005.04.130 Hansen, 2009, Quantifying the global cellular thiol-disulfide status, Proc. Natl. Acad. Sci. USA, 106, 422, 10.1073/pnas.0812149106 Huttlin, 2010, A tissue-specific atlas of mouse protein phosphorylation and expression, Cell, 143, 1174, 10.1016/j.cell.2010.12.001 Karisch, 2011, Global proteomic assessment of the classical protein-tyrosine phosphatome and “Redoxome”, Cell, 146, 826, 10.1016/j.cell.2011.07.020 Kislinger, 2006, Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling, Cell, 125, 173, 10.1016/j.cell.2006.01.044 Klatt, 1999, Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation, J. Biol. Chem., 274, 15857, 10.1074/jbc.274.22.15857 Kruger, 2008, SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function, Cell, 134, 353, 10.1016/j.cell.2008.05.033 Lim, 2012, A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A, J. Biol. Chem., 287, 25596, 10.1074/jbc.M112.369116 Linder, 2003, New insights into the mechanisms of protein palmitoylation, Biochemistry, 42, 4311, 10.1021/bi034159a Marino, 2010, Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces, J. Mol. Biol., 404, 902, 10.1016/j.jmb.2010.09.027 Marino, 2010, Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation, J. Mol. Biol., 395, 844, 10.1016/j.jmb.2009.10.042 Marino, 2012, Analysis and functional prediction of reactive cysteine residues, J. Biol. Chem., 287, 4419, 10.1074/jbc.R111.275578 Martin, 2012, Global profiling of dynamic protein palmitoylation, Nat. Methods, 9, 84, 10.1038/nmeth.1769 Martínez-Acedo, 2014, Proteomic analysis of peptides tagged with dimedone and related probes, J. Mass Spectrom., 49, 257, 10.1002/jms.3336 Martínez-Ruiz, 2007, Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences, Cardiovasc. Res., 75, 220, 10.1016/j.cardiores.2007.03.016 Mertins, 2013, Integrated proteomic analysis of post-translational modifications by serial enrichment, Nat. Methods, 10, 634, 10.1038/nmeth.2518 Mitchell, 2005, Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine, Nat. Chem. Biol., 1, 154, 10.1038/nchembio720 Pace, 2014, Zinc-binding cysteines: diverse functions and structural motifs, Biomolecules, 4, 419, 10.3390/biom4020419 Passmore, 2004, Getting into position: the catalytic mechanisms of protein ubiquitylation, Biochem. J., 379, 513, 10.1042/bj20040198 Paulsen, 2012, Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity, Nat. Chem. Biol., 8, 57, 10.1038/nchembio.736 Salsbury, 2008, Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid, Protein Sci., 17, 299, 10.1110/ps.073096508 Schmidt, 2006, Allosteric disulfide bonds, Biochemistry, 45, 7429, 10.1021/bi0603064 Sen, 2012, Hydrogen sulfide-linked sulfhydration of NF-kB mediates its antiapoptotic actions, Mol. Cell, 45, 13, 10.1016/j.molcel.2011.10.021 Seth, 2012, Endogenous protein S-nitrosylation in E. coli: regulation by OxyR, Science, 336, 470, 10.1126/science.1215643 Shi, 2005, Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ, Biochemistry, 44, 1683, 10.1021/bi0480943 Smith, 2012, Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling, Curr. Opin. Chem. Biol., 16, 498, 10.1016/j.cbpa.2012.10.016 Stewart, 2012, Reactive cysteine in the structural Zn(2+) site of the C1B domain from PKCalpha, Biochemistry, 51, 7263, 10.1021/bi300750w Townsend, 2009, Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress, J. Biol. Chem., 284, 436, 10.1074/jbc.M805586200 Weerapana, 2010, Quantitative reactivity profiling predicts functional cysteines in proteomes, Nature, 468, 790, 10.1038/nature09472 Wood, 2003, Structure, mechanism and regulation of peroxiredoxins, Trends Biochem. Sci., 28, 32, 10.1016/S0968-0004(02)00003-8