Impact of applied ultrasonic power on the low temperature drying of apple
Tài liệu tham khảo
Doymaz, 2009, An experimental study on drying of green apples, Dry. Technol., 27, 478, 10.1080/07373930802686065
Khanizadeh, 2008, Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing, J. Food Compos. Anal., 21, 396, 10.1016/j.jfca.2008.03.004
Van der Sluis, 2002, Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods, J. Agric. Food Chem., 50, 7211, 10.1021/jf020115h
Vrhovsek, 2004, Quantitation of polyphenols in different apple varieties, J. Agric. Food Chem., 52, 6532, 10.1021/jf049317z
Beck, 2014, Enhancement of convective drying by application of airborne ultrasound – a response surface approach, Ultrason. Sonochem., 21, 2144, 10.1016/j.ultsonch.2014.02.013
Vega-Gálvez, 2009, Effects of air-drying temperature on physico-chemical properties, antioxidant capacity and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian), Food Chem., 117, 647, 10.1016/j.foodchem.2009.04.066
Rodríguez, 2014, Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties, J. Food Eng., 129, 21, 10.1016/j.jfoodeng.2014.01.001
Chantaro, 2008, Production of antioxidant high dietary fiber powder from carrot peels, LWT – Food Sci. Technol., 41, 1987, 10.1016/j.lwt.2007.11.013
Romero, 2015, Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth), Ultrason. Sonochem., 22, 205, 10.1016/j.ultsonch.2014.06.011
Santacatalina, 2014, Ultrasonically enhanced low-temperature drying of apple: influence on drying kinetics and antioxidant potential, J. Food Eng., 138, 35, 10.1016/j.jfoodeng.2014.04.003
Ozuna, 2014, Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: kinetics and physical properties, Innov. Food Sci. Emerg. Technol., 23, 146, 10.1016/j.ifset.2014.03.008
Claussen, 2007, Atmospheric freeze drying – a review, Dry. Technol., 25, 957
Gallego-Juárez, 2007, Application of high-power ultrasound for dehydration of vegetables: processes and devices, Dry. Technol., 25, 1893, 10.1080/07373930701677371
Garcia-Perez, 2007, Power ultrasound mass transfer enhancement in food drying, Food Bioprod. Process., 85, 247, 10.1205/fbp07010
Gallego-Juárez, 2010, Power ultrasonic transducers with extensive radiators for industrial processing, Ultrason. Sonochem., 17, 953, 10.1016/j.ultsonch.2009.11.006
Riera, 2011, A computational study of ultrasound-assisted drying of food materials, 265
J.A. Cárcel, J.V. Garcia-Perez, R. Peña, A. Mulet, E. Riera, V. Acosta, J.A. Gallego-Juárez, Procedimiento y dispositivo para mejorar la transferencia de materia en procesos a baja temperatura mediante el uso de ultrasonidos de elevada intensidad, in: International patent, Spanish ref. P201131512, Internacional PCT ref. 120120283, September 20, 2011.
Santacatalina, 2015, Model-based investigation into atmospheric freeze drying assisted by power ultrasound, J. Food Eng., 151, 7, 10.1016/j.jfoodeng.2014.11.013
Bantle, 2011, Parametric study of high intensity ultrasound in the atmospheric freeze drying of peas, Dry. Technol., 29, 1230, 10.1080/07373937.2011.584256
Garcia-Perez, 2012, Intensification of low temperature drying by using ultrasound, Dry. Technol., 30, 1199, 10.1080/07373937.2012.675533
Awad, 2012, Applications of ultrasound in analysis, processing and quality control of food: a review, Food Res. Int., 48, 410, 10.1016/j.foodres.2012.05.004
Chemat, 2011, Applications of ultrasound in food technology: processing, preservation and extraction, Ultrason. Sonochem., 18, 813, 10.1016/j.ultsonch.2010.11.023
Ozuna, 2014, Influence of material structure on air-borne ultrasonic application in drying, Ultrason. Sonochem., 21, 1235, 10.1016/j.ultsonch.2013.12.015
Association of Official Analytical Chemists (AOAC), Official methods of analysis, Arlington, Virginia, USA, 1997.
Veltchev, 2000, Desorption isotherms of apples at several temperatures, Dry. Technol., 18, 1127, 10.1080/07373930008917759
Singleton, 1999, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent, Methods Enzymol., 299, 152, 10.1016/S0076-6879(99)99017-1
Benzie, 1996, The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay, Anal. Biochem., 239, 70, 10.1006/abio.1996.0292
Pulido, 2000, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay, J. Agric. Food Chem., 48, 3396, 10.1021/jf9913458
Salvador, 2008, Reduced effectiveness of the treatment for removing astringency in persimmon fruit when stored at 15 C: physiological and microstructural study, Postharvest Biol. Technol., 49, 340, 10.1016/j.postharvbio.2008.01.015
Schössler, 2012, Novel contact ultrasound system for the accelerated freeze-drying of vegetables, Innov. Food Sci. Emerg. Technol., 16, 113, 10.1016/j.ifset.2012.05.010
Garcia-Perez, 2009, Influence of the applied acoustic energy on the drying of carrots and lemon peel, Dry. Technol., 27, 281, 10.1080/07373930802606428
Ozuna, 2011, Improvement of water transport mechanisms during potato drying by applying ultrasound, J. Sci. Food Agric., 91, 2511, 10.1002/jsfa.4344
Stawczyk, 2007, Kinetics of atmospheric freeze-drying of apple, Transp. Porous Media, 66, 159, 10.1007/s11242-006-9012-4
Puig, 2012, Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying, Food Bioprod. Process., 90, 624, 10.1016/j.fbp.2012.07.001
Martínez-Las Heras, 2014, Influence of drying method and extraction variables on the antioxidant properties of persimmon leaves, Food Biosci., 6, 1, 10.1016/j.fbio.2014.01.002