Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice
Tài liệu tham khảo
Janssen, 2004, The healthcare costs of sarcopenia in the United States, J. Am. Geriatr. Soc., 52, 80, 10.1111/j.1532-5415.2004.52014.x
Marzetti, 2009, Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction, Biofactors, 35, 28, 10.1002/biof.5
Amara, 2007, Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo, Proc. Natl. Acad. Sci. USA, 104, 1057, 10.1073/pnas.0610131104
Siegel, 2013, Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice, Aging Cell, 12, 763, 10.1111/acel.12102
Conley, 2000, Oxidative capacity and ageing in human muscle, J. Physiol., 526, 203, 10.1111/j.1469-7793.2000.t01-1-00203.x
Siegel, 2012, Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle, Mech. Ageing Dev., 133, 620, 10.1016/j.mad.2012.08.002
Kruse, 2016, Age modifies respiratory complex I and protein homeostasis in a muscle type-specific manner, Aging Cell, 15, 89, 10.1111/acel.12412
Picard, 2010, Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers, Aging Cell, 9, 1032, 10.1111/j.1474-9726.2010.00628.x
Kent-Braun, 2000, Skeletal muscle oxidative capacity in young and older women and men, J. Appl. Physiol. (1985), 89, 1072, 10.1152/jappl.2000.89.3.1072
Goncalves, 2015, Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise, J. Biol. Chem., 290, 209, 10.1074/jbc.M114.619072
Chabi, 2008, Mitochondrial function and apoptotic susceptibility in aging skeletal muscle, Aging Cell, 7, 2, 10.1111/j.1474-9726.2007.00347.x
Jang, 2010, Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration, FASEB J., 24, 1376, 10.1096/fj.09-146308
Sohal, 2012, The redox stress hypothesis of aging, Free Radic. Biol. Med., 52, 539, 10.1016/j.freeradbiomed.2011.10.445
Kramer, 2015, The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function, Front Physiol., 6, 347, 10.3389/fphys.2015.00347
Duan, 2017, Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines, Mol. Biosyst., 13, 816, 10.1039/C6MB00861E
Hill, 2010, Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation, Biochim Biophys. Acta, 1797, 285, 10.1016/j.bbabio.2009.11.005
Dai, 2011, Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy, J. Am. Coll. Cardiol., 58, 73, 10.1016/j.jacc.2010.12.044
Min, 2011, Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy, J. Appl. Physiol. (1985), 111, 1459, 10.1152/japplphysiol.00591.2011
Yang, 2009, Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity, Antioxid. Redox Signal, 11, 2095, 10.1089/ars.2009.2445
Szeto, 2011, Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury, J. Am. Soc. Nephrol., 22, 1041, 10.1681/ASN.2010080808
Lee, 2011, Novel mitochondria-targeted antioxidant peptide ameliorates burn-induced apoptosis and endoplasmic reticulum stress in the skeletal muscle of mice, Shock, 36, 580, 10.1097/SHK.0b013e3182366872
Righi, 2013, Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy, FASEB J., 27, 2521, 10.1096/fj.12-220764
Zhao, 2004, Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury, J. Biol. Chem., 279, 34682, 10.1074/jbc.M402999200
Birk, 2013, The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin, J. Am. Soc. Nephrol., 24, 1250, 10.1681/ASN.2012121216
Birk, 2014, Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis, Br. J. Pharmacol., 171, 2017, 10.1111/bph.12468
Sakellariou, 2016, Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy, Sci. Rep., 6, 33944, 10.1038/srep33944
Anderson, 2009, Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans, J. Clin. Invest, 119, 573, 10.1172/JCI37048
Lokhmatikov, 2016, Impact of antioxidants on cardiolipin oxidation in liposomes: why mitochondrial cardiolipin serves as an apoptotic signal?, Oxid. Med Cell Longev., 2016, 8679469, 10.1155/2016/8679469
Lesnefsky, 2009, Enhanced modification of cardiolipin during ischemia in the aged heart, J. Mol. Cell Cardiol., 46, 1008, 10.1016/j.yjmcc.2009.03.007
Dalle-Donne, 2007, S-glutathionylation in protein redox regulation, Free Radic. Biol. Med., 43, 883, 10.1016/j.freeradbiomed.2007.06.014
Guo, 2014, Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications, Nat. Protoc., 9, 64, 10.1038/nprot.2013.161
Conley, 2000, Ageing, muscle properties and maximal O(2) uptake rate in humans, J. Physiol., 526, 211, 10.1111/j.1469-7793.2000.00211.x
Vina, 2009, Mitochondrial biogenesis in exercise and in ageing, Adv. Drug Deliv. Rev., 61, 1369, 10.1016/j.addr.2009.06.006
Gomes, 2013, Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging, Cell, 155, 1624, 10.1016/j.cell.2013.11.037
Lapuente-Brun, 2013, Supercomplex assembly determines electron flux in the mitochondrial electron transport chain, Science, 340, 1567, 10.1126/science.1230381
Greggio, 2017, Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle, Cell Metab., 25, 301, 10.1016/j.cmet.2016.11.004
Bazan, 2013, Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV, J. Biol. Chem., 288, 401, 10.1074/jbc.M112.425876
Tuominen, 2002, Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage, J. Biol. Chem., 277, 8822, 10.1074/jbc.M200056200
Chicco, 2007, Role of cardiolipin alterations in mitochondrial dysfunction and disease, Am. J. Physiol. Cell Physiol., 292, C33, 10.1152/ajpcell.00243.2006
McLean, 1993, Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids, Lipids, 28, 505, 10.1007/BF02536081
Santiago, 1973, Correlation between losses of mitochondrial ATPase activity and cardiolipin degradation, Biochem Biophys. Res. Commun., 53, 439, 10.1016/0006-291X(73)90681-5
Yamaoka, 1988, Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil, J. Nutr., 118, 290, 10.1093/jn/118.3.290
Petrosillo, 2003, Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin, FASEB J., 17, 714, 10.1096/fj.02-0729fje
Eirin, 2016, Restoration of mitochondrial cardiolipin attenuates cardiac damage in swine renovascular hypertension, J. Am. Heart Assoc., 5, 10.1161/JAHA.115.003118
Sabbah, 2016, Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure, Circ. Heart Fail, 9, e002206, 10.1161/CIRCHEARTFAILURE.115.002206
Paradies, 2004, Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin, Circ. Res, 94, 53, 10.1161/01.RES.0000109416.56608.64
Paradies, 1999, Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion, Free Radic. Biol. Med., 27, 42, 10.1016/S0891-5849(99)00032-5
Laitano, 2016, Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure, J. Appl. Physiol. (1985), 120, 733, 10.1152/japplphysiol.00822.2015
Min, 2015, Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy, J. Physiol., 593, 2017, 10.1113/jphysiol.2014.286518
Moopanar, 2005, Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 degrees C, J. Physiol., 564, 189, 10.1113/jphysiol.2005.083519
Umanskaya, 2014, Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging, Proc. Natl. Acad. Sci. USA, 111, 15250, 10.1073/pnas.1412754111
Grek, 2013, Causes and consequences of cysteine S-glutathionylation, J. Biol. Chem., 288, 26497, 10.1074/jbc.R113.461368
Li, 2018, Neuromuscular junction formation, aging, and disorders, Annu Rev. Physiol., 80, 159, 10.1146/annurev-physiol-022516-034255
Rudolf, 2014, Degeneration of neuromuscular junction in age and dystrophy, Front Aging Neurosci., 6, 99, 10.3389/fnagi.2014.00099
Ozawa, 2003, A genetic approach to identifying mitochondrial proteins, Nat. Biotechnol., 21, 287, 10.1038/nbt791
Clamp, 2007, Distinguishing protein-coding and noncoding genes in the human genome, Proc. Natl. Acad. Sci. USA, 104, 19428, 10.1073/pnas.0709013104
Hurd, 2008, Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage, J. Biol. Chem., 283, 24801, 10.1074/jbc.M803432200
Garcia, 2010, Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates, J. Biol. Chem., 285, 39646, 10.1074/jbc.M110.164160
Marcinek, 2004, Mitochondrial coupling in vivo in mouse skeletal muscle, Am. J. Physiol. Cell Physiol., 286, C457, 10.1152/ajpcell.00237.2003
White, 2001, HPLC-based assays for enzymes of glutathione biosynthesis, Curr. Protoc. Toxicol., Chapter 6
Wang, 2014, Multidimensional mass spectrometry-based shotgun lipidomics, Methods Mol. Biol., 1198, 203, 10.1007/978-1-4939-1258-2_13
Han, 2006, Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples, J. Lipid Res., 47, 864, 10.1194/jlr.D500044-JLR200
Duan, 2016, Quantitative profiling of protein s-glutathionylation reveals redox-dependent regulation of macrophage function during nanoparticle-induced oxidative stress, ACS Nano, 10, 524, 10.1021/acsnano.5b05524
Kramer, 2018, Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle, Redox Biol., 17, 367, 10.1016/j.redox.2018.05.011
Su, 2014, Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling, Free Radic. Biol. Med., 67, 460, 10.1016/j.freeradbiomed.2013.12.004
Ting, 2015, Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data, Mol. Cell Proteom., 14, 2301, 10.1074/mcp.O114.047035
Ting, 2017, PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data, Nat. Methods, 14, 903, 10.1038/nmeth.4390
Searle, 2018, Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry, Nat. Commun., 9, 5128, 10.1038/s41467-018-07454-w
MacLean, 2010, Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics, 26, 966, 10.1093/bioinformatics/btq054
Gu, 2016, Complex heatmaps reveal patterns and correlations in multidimensional genomic data, Bioinformatics, 32, 2847, 10.1093/bioinformatics/btw313