Large eddy simulation of hydrogen combustion in supersonic flows using an Eulerian stochastic fields method
Tài liệu tham khảo
Tian, 2016, Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor, Int J Hydrogen Energy, 41, 19218, 10.1016/j.ijhydene.2016.07.219
Sun, 2012, Spark ignition process in a scramjet combustor fueled by hydrogen and equipped with multi-cavities at Mach 4 flight condition, Exp Therm Fluid Sci, 43, 90, 10.1016/j.expthermflusci.2012.03.028
Wang, 2013, Large-Eddy/Reynolds-averaged Navier–Stokes simulation of combustion oscillations in a cavity-based supersonic combustor, Int J Hydrogen Energy, 38, 5918, 10.1016/j.ijhydene.2013.02.100
Saghafian, 2015, Large eddy simulations of the HIFiRE scramjet using a compressible flamelet/progress variable approach, Proc Combust Inst, 35, 2163, 10.1016/j.proci.2014.10.004
Pope, 1985, PDF methods for turbulent reactive flows, Prog Energy Combust Sci, 11, 119, 10.1016/0360-1285(85)90002-4
Haworth, 2010, Progress in probability density function methods for turbulent reacting flows, Prog Energy Combust Sci, 36, 168, 10.1016/j.pecs.2009.09.003
Fox, 2003, vol. 419
Koo, 2011, A quadrature-based LES/transported probability density function approach for modeling supersonic combustion, Proc Combust Inst, 33, 2203, 10.1016/j.proci.2010.07.058
Koo, 2013, LES-based Eulerian PDF approach for the simulation of scramjet combustors, Proc Combust Inst, 34, 2093, 10.1016/j.proci.2012.07.070
Valiño, 1998, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow Turbul Combust, 60, 157, 10.1023/A:1009968902446
Sabel'nikov, 2005, Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars, Phys Rev E, 72, 016301, 10.1103/PhysRevE.72.016301
Mustata, 2006, A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D), Combust Flame, 145, 88, 10.1016/j.combustflame.2005.12.002
Jones, 2014, Large-eddy simulation of spray combustion in a gas turbine combustor, Combust Flame, 161, 222, 10.1016/j.combustflame.2013.07.016
Jones, 2010, Large Eddy simulation of the sandia flame series (D–F) using the Eulerian stochastic field method, Combust Flame, 157, 1621, 10.1016/j.combustflame.2010.05.010
Jones, 2012, LES of a turbulent premixed swirl burner using the Eulerian stochastic field method, Combust Flame, 159, 3079, 10.1016/j.combustflame.2012.04.008
Dodoulas, 2013, Large eddy simulation of premixed turbulent flames using the probability density function approach, Flow, Turbul Combust, 90, 645, 10.1007/s10494-013-9446-z
Jangi, 2015, Effects of fuel cetane number on the structure of diesel spray combustion: an accelerated Eulerian stochastic fields method, Combust Theory Model, 1
Gong, 2015, Diesel flame lift-off stabilization in the presence of laser-ignition: a numerical study, Combust Theory Model, 19, 696, 10.1080/13647830.2015.1077997
Jones, 2015, LES of a methanol spray flame with a stochastic sub-grid model, Proc Combust Inst, 35, 1685, 10.1016/j.proci.2014.06.086
Jaishree, 2012, Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions, Combust Theory Model, 16, 435, 10.1080/13647830.2011.633349
Jaishree, 2011
Waidmann, 1995, Supersonic combustion of hydrogen/air in a scramjet combustion chamber, Space Technol, 6, 421, 10.1016/0892-9270(95)00017-8
Génin, 2010, Simulation of turbulent mixing behind a strut injector in supersonic flow, AIAA J, 48, 526, 10.2514/1.43647
Huang, 2015, Large eddy simulation of flame structure and combustion mode in a hydrogen fueled supersonic combustor, Int J Hydrogen Energy, 40, 9815, 10.1016/j.ijhydene.2015.06.011
Hou, 2014, Partially premixed flamelet modeling in a hydrogen-fueled supersonic combustor, Int J Hydrogen Energy, 39, 9497, 10.1016/j.ijhydene.2014.04.039
Oevermann, 2000, Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling, Aerosp Sci Technol, 4, 463, 10.1016/S1270-9638(00)01070-1
Wu, 2016, The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model, Acta Astronaut, 127, 375, 10.1016/j.actaastro.2016.06.021
Cao, 2015, Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach, Chin J Aeronautics, 28, 1316, 10.1016/j.cja.2015.08.008
Berglund, 2007, LES of supersonic combustion in a scramjet engine model, Proc Combust Inst, 31, 2497, 10.1016/j.proci.2006.07.074
Wang, 2015, IDDES simulation of hydrogen-fueled supersonic combustion using flamelet modeling, Int J Hydrogen Energy, 40, 683, 10.1016/j.ijhydene.2014.10.124
Pei, 2013, Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions, Proc Combust Inst, 34, 3039, 10.1016/j.proci.2012.07.033
2016
Greenshields, 2010, Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows, Int J Numer Methods Fluids, 63, 1
Kurganov, 2000, New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations, J Comput Phys, 160, 241, 10.1006/jcph.2000.6459
Van Leer, 1979, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J Comput Phys, 32, 101, 10.1016/0021-9991(79)90145-1
Jachimowski, 1988
Baurle, 2003, Assumed PDF turbulence-chemistry closure with temperature-composition correlations, Combust Flame, 134, 131, 10.1016/S0010-2180(03)00056-7
Möbus, 2003, Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion, Combust Flame, 132, 3, 10.1016/S0010-2180(02)00428-5
Potturi, 2012, 2012
Aung, 1997, Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure, Combust Flame, 109, 1, 10.1016/S0010-2180(96)00151-4
Mastorakos, 2009, Ignition of turbulent non-premixed flames, Prog Energy Combust Sci, 35, 57, 10.1016/j.pecs.2008.07.002