Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdi H, 2003, Encyclopedia of social sciences research methods, 792
Aichison J, 2003, The statistical analysis of compositional data
Belsley D. A, 1991, Conditioning diagnostics: collinearity and weak data regression
Booth G. D., 1994, Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation, US Dept of Agriculture, Forest Service
Bortz J, 1993, Statistik für Sozialwissenschaftler
De Veaux R. D., 1994, Selecting models from data: AI and statistics IV, 293
Ding C., 2004, K‐means clustering via principal component analysis, Proc. Int. Conf. Machine Learn., 225
Dobson A. J, 2002, An introduction to generalized linear models
Fan R.‐E, 2005, Working set selection using second order information for training SVM, J. Machine Learn. Res., 6, 1889
Faraway J. J, 2005, Linear models with R
Gelman A., 2007, Data analysis using regression and multilevel/hierarchical models
GoemanJ.2009.penalized: L1(lasso) and L2(ridge) penalized estimation in GLMs and in the Cox model.R package version 0.9‐23. –<http://CRAN.R‐project.org/package penalized>.
Guerard J., 1989, The handbook of financial modeling: the financial executive’s reference guide to accounting, finance, and investment models
Gunst R. F., 1980, Regression analysis and its application: a data‐oriented approach
Hair J. F. Jr, 1995, Multivariate data analysis
HilleRisLambers J., 2006, Hierarchical modelling for the environmental sciences, 59
Johnston J, 1984, Econometric methods
Joliffe I. T, 2002, Principal component analysis
KrämerN.et al.2007.Penalized partial least squares with applications to B‐splines transformations and functional data. –<http://ml.cs.tu‐berlin.de/nkraemer/publications.html">http://ml.cs.tu‐berlin.de/nkraemer/publications.html>.
Lebart L., 1995, Statistique exploratoire multidimensionelle
Tabachnick B., 1989, Using multivariate statistics
Tibshirani R, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B, 58, 267, 10.1111/j.2517-6161.1996.tb02080.x
Weisberg S, 2008, dr: methods for dimension reduction for regression, R package ver. 3.0.3
Zha H., 2001, Spectral relaxation for K‐means clustering, Neural Inform. Process. Syst., 14, 1057