Computational study on interaction energy changes during double proton transfer process
Tài liệu tham khảo
Hallay-Suszek, 2007, Parameterization of the potential energy surface of the double proton transfer in porphyrins, From Computational Biophysics to Systems Biology, 36, 133
Markwick, 2005, Targeted Car–Parrinello molecular dynamics: elucidating double proton transfer in formic acid dimer, The Journal of Chemical Physics, 122, 054112, 10.1063/1.1842049
Cybulski, 2005, Theoretical studies of nuclear magnetic resonance parameters for the proton-exchange pathways in porphyrin and porphycene, The Journal of Physical Chemistry A, 109, 4162, 10.1021/jp045440h
S. Shetty, S. Pal, D. Kanhere, A. Goursot, A quantitative and a qualitative study of the resonance assisted double proton transfer in formic acid dimer, Archiv preprint cond-mat/0412310.
Stepanov, 2004, Simulation of the double proton transfer dynamics in the benzoic acid dimer, Journal of Applied Spectroscopy, 71, 462, 10.1023/B:JAPS.0000046284.33434.6e
Smedarchina, 2005, Tunneling dynamics of double proton transfer in formic acid and benzoic acid dimers, The Journal of Chemical Physics, 122, 134309, 10.1063/1.1868552
Bała, 2006, SCC-DFTB energy barriers for single and double proton transfer processes in the model molecular systems malonaldehyde and porphycene, International Journal of Quantum Chemistry, 106, 636, 10.1002/qua.20810
Walewski, 2007, Steered classical and quantum path-integral molecular dynamics simulations of strongly coupled protons motions in porphycene, From Computational Biophysics to Systems Biology, 36, 291
Glaser, 1999, Single-and double-proton-transfer in the aggregate between cytosine and guaninediazonium ion, Organic Letters, 1, 273, 10.1021/ol990589a
Gorb, 2004, Double-proton transfer in adenine–thymine and guanine–cytosine base pairs: a post-hartree-fock ab initio study, The Journal of American Chemical Society, 126, 10119, 10.1021/ja049155n
Kwon, 2007, Double proton transfer dynamics of model DNA base pairs in the condensed phase, Proceedings of the National Academy of Sciences, 104, 8703, 10.1073/pnas.0702944104
Chen, 2008, Revisiting the carboxylic acid dimers in aqueous solution: interplay of hydrogen bonding, hydrophobic interactions, and entropy, The Journal of Physical Chemistry B, 112, 242, 10.1021/jp074355h
Miura, 1998, An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer, The Journal of Chemical Physics, 109, 5290, 10.1063/1.477147
Guallar, 1999, Semiclassical molecular dynamics simulations of excited state double-proton transfer in 7-azaindole dimers, The Journal of Chemical Physics, 110, 9922, 10.1063/1.478866
Hrouda, 1994, Double proton transfer: from the formamide dimer to the adenine⋯thymine base pair, The Journal of Physical Chemistry, 98, 4742, 10.1021/j100068a042
Wang, 2005, Investigations of double proton transfer and one-electron oxidation behavior in double h-bonded glycine–formamide complex in the gas phase, Journal of Molecular Structure: THEOCHEM, 726, 17, 10.1016/j.theochem.2005.03.058
Smedarchina, 2007, Correlated double-proton transfer. I: theory, The Journal of Chemical Physics, 127, 174513, 10.1063/1.2785186
Podolyan, 2002, Double-proton transfer in the formamidine–formamide dimer: post-Hartree–Fock gas-phase and aqueous solution study, The Journal of Physical Chemistry A, 106, 12103, 10.1021/jp021666d
Dziekonski, 2003, Nonempirical analysis of the catalytic activity of the molecular environment-optimal static and dynamic catalytic fields for double proton transfer in formamide–formamidine complex, Chemical Physics Letters, 367, 367, 10.1016/S0009-2614(02)01712-8
Cybulski, 2009, A computational study of the nuclear magnetic resonance parameters for double proton exchange pathways in the formamide–formic acid and formamide–formamidine complexes, Physical Chemistry Chemical Physics, 11, 11232, 10.1039/b913947h
Simperler, 2001, Proton motion and proton transfer in the formamidine–formic acid complex: an ab initio projector augmented wave molecular dynamics study, Chemistry – A European Journal, 7, 1606, 10.1002/1521-3765(20010417)7:8<1606::AID-CHEM16060>3.0.CO;2-G
Daly, 2010, Microwave spectrum and structural parameters for the formamide–formic acid dimer, The Journal of Chemical Physics, 133, 174304, 10.1063/1.3501356
Szczesniak, 2000, Preliminary observations on the dependence of potential energy surfaces on intramolecular degrees of freedom, NATO ASI Series C Mathematical and Physical Sciences, 561, 73
Xantheas, 1996, On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy, The Journal of Chemical Physics, 104, 10.1063/1.471605
Kwiatkowski, 1986, Quantum-mechanical prediction of tautomeric equilibria, Advances in Quantum Chemistry, 18, 85, 10.1016/S0065-3276(08)60048-9
Maranon, 1999, Molecular dynamics simulation of double proton transfer: adenine–thymine base pair, Journal of Theoretical Biology, 201, 93, 10.1006/jtbi.1999.1008
Hazra, 2005, Formamide tautomerization: catalytic role of formic acid, The Journal of Physical Chemistry A, 109, 7621, 10.1021/jp0520244
M.J. Frisch et al., Gaussian 09 Revision A.1, Gaussian Inc. Wallingford, CT, 2009.
Jeziorski, 1993, Sapt: a program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies, Methods and Techniques in Computational Chemistry: METECC94, 79
R. Bukowski, W. Cencek, P. Jankowski, M. Jeziorska, B. Jeziorski, S. Kucharski, V. Lotrich, A. Misquitta, R. Moszyński, K. Patkowski, R. Podeszwa, S. Rybak, K. Szalewicz, H. Williams, R. Wheatley, P. Wormer, P. Żuchowski, An Ab Initio Program for Many-Body Symmetry-Adapted Perturbation Theory Calculations of Intermolecular Interaction Energies. Sequential and parallel versions. User’s Guide, University of Delaware and University of Warsaw, 2008.
Angeli, 2005, A Molecular Electronic Structure Program, Release 2.0
Gilli, 2002, Journal of the American Chemical Society, 124, 13554, 10.1021/ja020589x
Gilli, 2004, Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in β-diketone enol RAHB systems, Journal of the American Chemical Society, 126, 3845, 10.1021/ja030213z
Gilli, 2005, Variable-temperature X-ray crystallographic and dft computational study of the NH⋯O/N⋯HO tautomeric competition in 1-(arylazo)-2-naphthols: outline of a transition-state hydrogen-bond theory, Journal of the American Chemical Society, 127, 4943, 10.1021/ja0453984
Grabowski, 2011, What is the covalency of hydrogen bonding?, Chemical Reviews, 111, 2597, 10.1021/cr800346f