Stability Result for a New Viscoelastic–Thermoelastic Timoshenko System
Tóm tắt
In this work, we prove a general and optimal decay estimates for the solution energy of a new thermoelastic Timoshenko system with viscoelastic law acting on the transverse displacement. Therefore, exponential and polynomial decay rates are obtained as particular cases. The result is obtained under the assumption of equal speed of wave propagation.
Tài liệu tham khảo
Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41(245), 744–746 (1921)
Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1975)
Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)
Ammar-Khodja, F., Benabdallah, A., Muñoz Rivera, J.E., Racke, R.: Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194(1), 82–115 (2003)
Apalara, T.A.: Asymptotic behavior of weakly dissipative Timoshenko system with internal constant delay feedbacks. Appl. Anal. 95(1), 187–202 (2016)
Messaoudi, S.A., Mustafa, M.I.: A stability result in a memory-type Timoshenko system. Dyn. Syst. Appl. 183(4), 457–468 (2009)
Raposo, C.A., Ferreira, J., Santos, M.L., Castro, N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18(5), 535–541 (2005)
Guesmia, A., Messaoudi, S.A.: On the control of a viscoelastic damped Timoshenko-type system. Appl. Math. Comput. 2062, 589–597 (2008)
Guesmia, A., Messaoudi, S.A.: General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math. Methods Appl. Sci. 32(16), 2102–2122 (2009)
Guesmia, A., Messaoudi, S.A.: Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement. Acta Math. Sci. 32B(1), 1–33 (2016)
Guesmia, A., Messaoudi, S.A., Soufyane, A.: Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems. Electron. J. Differ. Equ. 2012(193), 1–45 (2012)
Muñoz Rivera, J.E., Racke, R.: Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 341(2), 1068–1083 (2008)
Apalara, T.A.: General stability of memory-type thermoelastic Timoshenko beam acting on shear force. Contin. Mech. Thermodyn. 30, 291–300 (2018)
Almeida Júnior, D.da S., Santos, M.L., Muũoz Rivera, J.E.: Stability to 1-D thermoelastic Timoshenko beam acting on shear force. Z. Angew. Math. Phys 65(6), 1233–1249 (2013)
Messaoudi, S.A., Said-Houari, B.: Uniform decay in a Timoshenko-type system with past history. J. Math. Anal. Appl. 360(2), 459–475 (2009)
Messaoudi, S.A., Fareh, A.: General decay for a porous thermoelastic system with memory: the case of equal speeds. Nonlinear Anal. TMA 74(18), 6895–6906 (2011)
Messaoudi, S.A., Fareh, A.: General decay for a porous thermoelastic system with memory: the case of nonequal speeds. Acta Math. Sci. 33(1), 23–40 (2013)
Cavalcanti, M.M., Domingos, V.N., Cavalcanti, F.A., Falcão, N., Lasiecka, I., Rodrigues, J.H.: Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping. Z. Angew. Math. Phys. 65, 1189–1206 (2014)
Dell’Oro, F., Pata, V.: On the stability of Timoshenko systems with Gurtin–Pipkin thermal law. J. Differ. Equ. 257, 523–548 (2014)
Messaoudi, S.A., Said-Houari, B.: Energy decay in a Timoshenko-type system with history in thermoelasticity of type III. Adv. Differ. Equ. 14, 375–400 (2009)
Alves, M.O., Tavares, E.H.G., Silva, M.A.J., Rodrigues, J.H.: On modelling and uniform stability of a partially dissipative viscoelastic Timoshenko system. SIAM J. Math. Anal. 51(6), 4520–4543 (2019)
Mustafa, M.I.: General decay result for nonlinear viscoelastic equations. J. Math. Anal. Appl. 457, 134–152 (2018)
Hassan, J.H., Messaoudi, S.A., Mostafa, Z.: Existence and new general decay result for a viscoelastic-type Timoshenko system, ZAA (in press)
Jin, K.P., Liang, J., Xiao, T.J.: Coupled second order evolution equations with fading memory: optimal energy decay rate. J. Differ. Equ. 257(5), 1501–1528 (2014)
Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)
