Numerical modeling of reinforced concrete beams repaired and strengthened with SFRC
Tài liệu tham khảo
Nanni, 2012, A new tool for concrete and masonry repair: strengthening with fiber-reinforced cementitious matrix composites, Concr Int, 34, 43
Naaman, 1996, Reinforced and prestressed concrete using HPFRCC matrices. High performance fiber reinforced cementitious composites, RILEM Proc, 31, 291
Mesbah HA, Kassimi F, Yahia A, Khayat H. Flexural performance of reinforced concrete beams repaired with fiber-reinforced SCC. In: Fifth Intnl RILEM Symp on self compacting concrete; 2000.
Wang, 2007, Ultra-high strength steel fiber reinforced concrete for strengthening of RC frames, J Mar Sci Technol, 15, 210, 10.51400/2709-6998.2394
Farhat, 2007, High performance fibre-reinforced cementitious composite (CARDIFRC) – performance and application to retrofitting, Eng Fract Mech, 74, 151, 10.1016/j.engfracmech.2006.01.023
Massicotte, 2008, Seismic retrofitting of rectangular bridge piers with UHPFRC jackets, BEFIB
Brühwiler E, Denarié E. Rehabilitation of concrete structures using ultra-high performance fiber reinforced concrete. In: The second international symposium on ultra high performance concrete. Kassel, Germany; 2008.
Skazlic, 2009, Utilization of high performance fiber-reinforced micro-concrete as a repair material, Concr Repair, Rehab Retrofit, II, 859
Boscato, 2009, Experimental investigation on repair of RC pavements with SFRC, Concr Repair, Rehab Retrofit, II, 1285
Martinola, 2010, Strengthening and repair of RC beams with fiber reinforced concrete, Cem Concr Compos, 32, 731, 10.1016/j.cemconcomp.2010.07.001
Maringoni S, Meda A, Mostosi S, Riva P. Strengthening of RC members by means of high performance concrete. American Concrete Institute, ACI special publication; 2012. p. 201–13 [289SP].
Iskhakov, 2013, High performance repairing of reinforced concrete structures, Mater Des, 44, 216, 10.1016/j.matdes.2012.07.041
Blanco, 2013, Application of constitutive models in European codes to RC–FRC, Constr Build Mater, 40, 246, 10.1016/j.conbuildmat.2012.09.096
Hung, 2013, Three-dimensional model for analysis of high performance fiber reinforced cement-based composites, Composites: Part B, 45, 1441, 10.1016/j.compositesb.2012.08.004
Liu, 2009, Research on non-linear structural behaviors of prestressed concrete beams made of high strength and steel fiber reinforced concretes, Constr Build Mater, 23, 85, 10.1016/j.conbuildmat.2008.01.016
Barros J, Gettu R, Barragán B. Material nonlinear analysis of steel fiber reinforced concrete beams failing in shear. In: Sixth RILEM symposium on fibre reinforced concrete (FRC) BEFIB 2004, RILEM PRO 39; 2004. p. 711–20.
Haido, 2011, Simulation of dynamic response for steel fibrous concrete members using new material modeling, Constr Build Mater, 25, 1407, 10.1016/j.conbuildmat.2010.09.002
Özcan, 2009, Experimental and finite element analysis on the steel fiber-reinforced concrete (SFRC) beams ultimate behavior, Constr Build Mater, 23, 1064, 10.1016/j.conbuildmat.2008.05.010
Peng, 2000, A continuum damage mechanics model for concrete reinforced with randomly distributed short fibers, Comput Struct, 78, 505, 10.1016/S0045-7949(00)00045-6
Wang, 2008, Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression, Constr Build Mater, 22, 811, 10.1016/j.conbuildmat.2007.01.005
Campione, 2008, Fibrous reinforced concrete beams in flexure: experimental investigation, analytical modelling and design considerations, Eng Struct, 30, 2970, 10.1016/j.engstruct.2008.04.019
Antunes, 2007, Inverse analysis procedures for determining the tensile stress–crack opening curve of concrete, RILEM TC 187-SOC, 31
Pasa Dutra, 2010, A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete, Cem Concr Res, 40, 460, 10.1016/j.cemconres.2009.10.018
Li, 1991, Short random fiber reinforced brittle matrix composites, J Mech Phys Solids, 39, 607, 10.1016/0022-5096(91)90043-N
Geng, 1997, Micromechanics-based fem simulation of fiber-reinforced cementitious composite components, Comput Struct, 64, 973, 10.1016/S0045-7949(97)00011-4
Naaman, 1991, Fiber pullout and bond slip. II: experimental validation, J Struct Eng, 117, 2791, 10.1061/(ASCE)0733-9445(1991)117:9(2791)
Chanvillard, 1999, Modeling the pullout of wire-drawn steel fibers, Cem Concr Res, 29, 1027, 10.1016/S0008-8846(99)00081-2
Laranjeira, 2010, Predicting the pullout response of inclined hooked steel fibers, Cem Concr Res, 40, 1471, 10.1016/j.cemconres.2010.05.005
Caggiano, 2012, A unified formulation for simulating the bond behaviour of fibres in cementitious materials, Mater Des, 42, 204, 10.1016/j.matdes.2012.05.003
Soetens, 2013, A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres, Constr Build Mater, 43, 253, 10.1016/j.conbuildmat.2013.01.034
Cunha, 2012, A finite element model with discrete embedded elements for fibre reinforced composites, Comput Struct, 94–95, 22, 10.1016/j.compstruc.2011.12.005
Fang, 2013, Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading, Constr Build Mater, 44, 118, 10.1016/j.conbuildmat.2013.02.067
Gal, 2011, Meso-scale analysis of FRC using a two-step homogenization approach, Comput Struct, 89, 921, 10.1016/j.compstruc.2011.02.006
Ren, 2013, Multi-scale based fracture and damage analysis of steel fiber reinforced concrete, Eng Fail Anal, 10.1016/j.engfailanal.2013.01.029
Radtke, 2010, A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres, Eng Fract Mech, 77, 597, 10.1016/j.engfracmech.2009.11.014
Oliver, 2012, A micromorphic model for steel fiber reinforced concrete, Int J Solids Struct, 49, 2990, 10.1016/j.ijsolstr.2012.05.032
Caner, 2013, Microplane model M7f for fiber reinforced concrete, Eng Fract Mech, 105, 41, 10.1016/j.engfracmech.2013.03.029
Brighenti, 2013, Cracking behaviour of fibre-reinforced cementitious composites: a comparison between a continuous and a discrete computational approach, Eng Fract Mech, 103, 103, 10.1016/j.engfracmech.2012.01.014
Luccioni, 2012, A simple approach to model SFRC, Constr Build Mater, 37, 111, 10.1016/j.conbuildmat.2012.07.027
Luccioni, 1996, Coupled plastic damage model, Comput Methods Appl Mech Eng, 129, 81, 10.1016/0045-7825(95)00887-X
Luccioni, 2005, A plastic damage approach for confined concrete, Comput Struct, 83, 2238, 10.1016/j.compstruc.2005.03.014
Luccioni, 2002, Modelo para materiales compuestos con deslizamiento de fibras, Análisis y cálculo de estructuras de materiales compuestos Junio, 411
Ruano, 2014, Shear retrofitting of reinforced concrete beams with steel fiber reinforced concrete, Constr Build Mater, 54, 646, 10.1016/j.conbuildmat.2013.12.092
CIRSOC 201. Reglamento argentino para estructuras de hormigón; 2005.
American Concrete Institute. ACI 318. Building code requirements for structural concrete; 2005.
Truesdell, 1960, The classical field theories, Handbuch der Physik, 10.1007/978-3-642-45943-6_2
Oñate E, Oller S, Botella S, Miquel J. Métodos Avanzados de Cálculo de Estructuras de Materiales Compuestos. Publication CIMNE No.11, Barcelona, Spain; 1991.
Oller, 1996, A plastic damage constitutive model for composite materials, Int J Solids Struct, 33, 2501, 10.1016/0020-7683(95)00161-1
Lubliner, 1972, On the thermodynamic foundations of non-linear mechanics, Int J Non Linear Mech, 7, 237, 10.1016/0020-7462(72)90048-0
Oller, 1988, Un modelo constitutivo de daño plástico para materiales friccionales. Parte I: variables fundamentales, funciones de fluencia y potencial, Revista Internacional de Métodos Numéricos para el Cálculo y Diseño en Ingeniería, 4, 397
Rougier, 2007, Numerical assessment of FRP retrofitting systems for reinforced concrete elements, Eng Struct, 29, 1664, 10.1016/j.engstruct.2006.09.008
Luccioni, 2005, Bond–slip in reinforced concrete elements, J Struct Eng, 131, 1690, 10.1061/(ASCE)0733-9445(2005)131:11(1690)
Isla Calderón, 2008, Modelo para hormigones reforzados con fibras, ENIEF
Betten, 1988, Application of tensor functions to the formulation of yield criteria for anisotropic materials, Int J Plast, 4, 29, 10.1016/0749-6419(88)90003-4
Toledo, 2008, A micro-macromechanical approach for composite laminates, Mech Mater, 885, 10.1016/j.mechmat.2008.05.004
ASTM C 39. Test method for compressive strength of cylindrical concrete specimens. Annual book of ASTM standards. 86, Volume 04.02 concrete and aggregates [section 4 construction].
ASTM C 469. Standard test method for static modulus of elasticity and Poisson‘s ratio of concrete in compression. Annual book of ASTM standards, volume 04.02 concrete and aggregates; 1987 [section 4 construction].
Vandewalle, 2002, Rilem TC 162-TDF. Test and design methods for steel fibre reinforced concrete, Mater Struct, 35, 579, 10.1617/13884
Shah, 2011, Recent trends in steel fibered high-strength concrete, Mater Des, 32, 4122, 10.1016/j.matdes.2011.03.030
Torrijos, 2008, Mesoestructura, comportamiento mecánico y propiedades de transporte en hormigón, Tesis presentada para el grado de doctor en ingeniería
Isla, 2012, Efecto de la orientación y del confinamiento en el ensayo de extracción de fibras, XXXV Jornadas Sul Americanas de Engenharia Estrutural
Claderas Bohigas A. Shear design of reinforced high-strength concrete beams. Tesis doctoral. ISBN 8468819409. Universitat Politècnica de Catalunya. Departament d’Enginyeria de la Construcció; 2002.
Ferreira, 2013, Numerical simulation of shear-strengthened RC beams, Eng Struct, 46, 359, 10.1016/j.engstruct.2012.06.050
Isla, 2010, Arrancamiento de fibra de acero en matriz de hormigon, XXXIV Jornadas sudamericanas de Ingeniería Estructural
Wang, 2010, Experimental and numerical analysis on effect of fibre aspect ratio on mechanical properties of SRFC, Constr Build Mater, 24, 559, 10.1016/j.conbuildmat.2009.09.009
