Density, distribution and nature of planar faults in silver antimony telluride for thermoelectric applications
Tài liệu tham khảo
Ko, 2014, Structural studies of AgSbTe2 under pressure: experimental and theoretical analyses, Curr. Appl. Phys., 14, 1538, 10.1016/j.cap.2014.09.004
Ma, 2013, Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2, Nat. Nanotechnol., 8, 445, 10.1038/nnano.2013.95
Medlin, 2013, Atomic-scale interfacial structure in rock salt and tetradymite chalcogenide thermoelectric materials, Jom, 65, 390, 10.1007/s11837-012-0530-y
Min, 2011, Electron transport properties of La-doped AgSbTe2 thermoelectric compounds, Electron. Mater. Lett., 7, 255, 10.1007/s13391-011-0914-0
Mohanraman, 2014, Influence of in doping on the thermoelectric properties of an AgSbTe2 compound with enhanced figure of merit, J. Mater. Chem. A, 2, 2839, 10.1039/c3ta14547f
Mohanraman, 2013, Enhanced thermoelectric performance in Bi-doped p-type AgSbTe2 compounds, J. Appl. Phys., 114, 5, 10.1063/1.4828478
Xu, 2010, High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2, J. Mater. Chem., 20, 6138, 10.1039/c0jm00138d
Zhou, 2008, Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance, J. Am. Chem. Soc., 130, 4527, 10.1021/ja7110652
Pei, 2011, High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878
Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090
Jovovic, 2009, Doping effects on the thermoelectric properties of AgSbTe2, J. Electron. Mater., 38, 1504, 10.1007/s11664-009-0669-7
Morelli, 2008, Intrinsically minimal thermal conductivity in cubic I-V-VI(2) semiconductors, Phys. Rev. Lett., 101, 4, 10.1103/PhysRevLett.101.035901
Wang, 2008, Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound, Appl. Phys. Lett., 93, 3, 10.1063/1.3029774
Wojciechowski, 2009, Structural and thermoelectric properties of AgSbTe2-AgSbSe2 pseudobinary system, Phys. Rev. B, 79, 7, 10.1103/PhysRevB.79.184202
Marin, 1985, Phase-Equilibria in the Sb2Te3-Ag2Te system, J. Mater. Sci., 20, 730, 10.1007/BF01026548
Geller, 1959, Ternary semiconducting compounds with sodium chloride-like structure- AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2, Acta Crystallogr., 12, 46, 10.1107/S0365110X59000135
Castellero, 2017, Effects of rapid solidification on phase formation and microstructure evolution of AgSbTe2-based thermoelectric compounds, J. Nanosci. Nanotechnol., 17, 1650, 10.1166/jnn.2017.13736
Jovovic, 2008, Measurements of the energy band gap and valence band structure of AgSbTe2, Phys. Rev. B, 77, 8, 10.1103/PhysRevB.77.245204
Wolfe, 1960, Anomalous Hall effect in AgSbTe2, J. Appl. Phys., 31, 1959, 10.1063/1.1735479
Zhu, 2018, Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding, Adv. Mater., 30, 9, 10.1002/adma.201706735
Rosi, 1961, Semiconducting materials for thermoelctric power generation Rca review, 22, 82
Wood, 1988, Materials for thermoelectric energy-conversion, Rep. Prog. Phys., 51, 459, 10.1088/0034-4885/51/4/001
Wang, 2006, High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering, Appl. Phys. Lett., 88, 3, 10.1063/1.2181197
Cook, 2007, Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)(15)(GeTe)(85) thermoelectric material, J. Appl. Phys., 101, 6, 10.1063/1.2645675
Schroder, 2014, Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering, Inorg. Chem., 53, 7722, 10.1021/ic5010243
Yang, 2008, Nanostructures in high-performance (GeTe)(x)(AgSbTe(2))(100-x) thermoelectric materials, Nanotechnology, 19, 5, 10.1088/0957-4484/19/24/245707
Hsu, 2004, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science, 303, 818, 10.1126/science.1092963
Roychowdhury, 2017, Ultrahigh thermoelectric figure of merit and enhanced mechanical stability of p-type AgSb1-xZnxTe2, Acs Energy Lett., 2, 349, 10.1021/acsenergylett.6b00639
Sugar, 2010, Solid-state precipitation of stable and metastable layered compounds in thermoelectric AgSbTe2, J. Mater. Sci., 46, 1668, 10.1007/s10853-010-4984-4
Sharma, 2010, Influence of nanostructuring and heterogeneous nucleation on the thermoelectric figure of merit in AgSbTe2, J. Appl. Phys., 107, 9, 10.1063/1.3446094
Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv. Mater., 19, 1043, 10.1002/adma.200600527
Kim, 2016, Dislocation strain as the mechanism of phonon scattering at grain boundaries, Mater. Horiz., 3, 234, 10.1039/C5MH00299K
Chen, 2017, Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence, Adv. Mater., 29, 8, 10.1002/adma.201606768
He, 2010, Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3Thermoelectric materials, Adv. Funct. Mater., 20, 764, 10.1002/adfm.200901905
Dames, 2005, Thermal conductivity of nanostructered thermoelectric materials
Sharma, 2010, Influence of nanostructuring and heterogeneous nucleation on the thermoelectric figure of merit in AgSbTe2, J. Appl. Phys., 107, 10.1063/1.3446094
Amouyal, 2014, Reducing lattice thermal conductivity of the thermoelectric compound AgSbTe2 (P4/mmm) by lanthanum substitution: computational and experimental approaches, J. Electron. Mater., 43, 3772, 10.1007/s11664-014-3145-y
Hong, 2018, Achieving zT > 2 in p-type AgSbTe2-xSex alloys via exploring the extra light valence band and introducing dense stacking faults, Adv. Energy Mater., 8, 7, 10.1002/aenm.201702333
Cojocaru-Miredin, 2017, Role of nanostructuring and microstructuring in silver antimony telluride compounds for thermoelectric applications, ACS Appl. Mater. Interfaces, 9, 14779, 10.1021/acsami.7b00689
Darwin, 1922, The reflexion of X-rays from imperfect crystals, Philos. Mag., 43, 800, 10.1080/14786442208633940
Zwicky, 1932, Secondary structure and mosaic structure of crystals, Phys. Rev., 40, 63, 10.1103/PhysRev.40.63
Er, 2014, Time-resolved X-ray diffraction studies of laser-induced acoustic wave propagation in bilayer metallic thin crystals, J. Appl. Phys., 116, 10.1063/1.4894177
Geis, 1992, Device quality diamond substrates, Diam. Relat. Mat., 1, 684, 10.1016/0925-9635(92)90191-P
He, 2015, Ultrahigh thermoelectric performance in mosaic crystals, Adv. Mater., 27, 3639, 10.1002/adma.201501030
Zaefferer, 2014, Theory and application of electron channelling contrast imaging under controlled diffraction conditions, Acta Mater., 75, 20, 10.1016/j.actamat.2014.04.018
Callaway, 1960, Effect of point imperfections on lattice thermal conductivity, Phys. Rev., 120, 1149, 10.1103/PhysRev.120.1149
Schaffer, 2012, Sample preparation for atomic-resolution STEM at low voltages by FIB, Ultramicroscopy, 114, 62, 10.1016/j.ultramic.2012.01.005
Martin, 2004
Argaman, 1998, Density functional theory - an introduction, Am. J. Phys., 68, 69
Mishin, 2010, Atomistic modeling of interfaces and their impact on microstructure and properties, Acta Mater., 58, 1117, 10.1016/j.actamat.2009.10.049
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Perdew, 2007, Generalized gradient approximation for solids and their surfaces, Phys. Rev. Lett., 100, 1
Picard, 2014, Theory of dynamical electron channeling contrast images of near-surface crystal defects, Ultramicroscopy, 146, 71, 10.1016/j.ultramic.2014.07.006
Amouyal, 2016
Sugar, 2009, Precipitation of Ag2Te in the thermoelectric material AgSbTe2, J. Alloy. Comp., 478, 75, 10.1016/j.jallcom.2008.11.054
Amouyal, 2013, On the role of lanthanum substitution defects in reducing lattice thermal conductivity of the AgSbTe2 (P4/mmm) thermoelectric compound for energy conversion applications, Comput. Mater. Sci., 78, 98, 10.1016/j.commatsci.2013.05.027
Medlin, 2010, Interfacial defect structure at Sb2Te3 precipitates in the thermoelectric compound AgSbTe2, Scr. Mater., 62, 379, 10.1016/j.scriptamat.2009.11.028
Zhang, 2010, Phase compositions, nanoscale microstructures and thermoelectric properties in Ag2−ySbyTe1+y alloys with precipitated Sb2Te3 plates, Acta Mater., 58, 4160, 10.1016/j.actamat.2010.04.007
Ayral-Marin RM, 1990, Contribution to the study of AgSbTe2, Euro. J. Solid State Chem., 27, 747
Wu, 2011, Phase equilibria of Ag–Sb–Te thermoelectric materials, Acta Mater., 59, 6463, 10.1016/j.actamat.2011.07.010
Singh, 2006, Phonon conductivity of plastically deformed crystals: role of stacking faults and dislocations, Phys. Rev. B, 74, 6, 10.1103/PhysRevB.74.184302
Hong, 2018, Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping, Adv. Mater., 30, 8, 10.1002/adma.201705942
Hanus, 2019, Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency, Adv. Mater., 31, 10.1002/adma.201900108
Hanus, 2018, Phonon diffraction and dimensionality crossover in phonon-interface scattering, Commun. Phys., 1, 11, 10.1038/s42005-018-0070-z
Klemens, 1957, Some scattering problems in conduction theory, Can. J. Phys., 35, 441, 10.1139/p57-048
Amouyal, 2016, Silver-antimony-telluride: from first-principles calculations to thermoelectric applications