Density, distribution and nature of planar faults in silver antimony telluride for thermoelectric applications

Acta Materialia - Tập 178 - Trang 135-145 - 2019
Lamya Abdellaoui1, Siyuan Zhang1, Stefan Zaefferer1, Ruben Bueno-Villoro1, Andrei Baranovskiy2, Oana Cojocaru-Mirédin3, Yuan Yu3, Yaron Amouyal2, Dierk Raabe4, Gerald Jeffrey Snyder5, Christina Scheu1
1Max-Planck-Institut Für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
2Department of Materials Science and Engineering, Technion–Israel Institute of Technology, Technion City, 32000, Haifa, Israel
3Institute of Physics, RWTH Aachen University, Sommerfeldstraße 14, 52056, Aachen, Germany
4Max-Planck Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237, Düsseldorf, Germany
5Northwestern University, Materials Science and Engineering Department, 2220 Campus Drive, Evanston, IL, 60208-3109, USA

Tài liệu tham khảo

Ko, 2014, Structural studies of AgSbTe2 under pressure: experimental and theoretical analyses, Curr. Appl. Phys., 14, 1538, 10.1016/j.cap.2014.09.004 Ma, 2013, Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2, Nat. Nanotechnol., 8, 445, 10.1038/nnano.2013.95 Medlin, 2013, Atomic-scale interfacial structure in rock salt and tetradymite chalcogenide thermoelectric materials, Jom, 65, 390, 10.1007/s11837-012-0530-y Min, 2011, Electron transport properties of La-doped AgSbTe2 thermoelectric compounds, Electron. Mater. Lett., 7, 255, 10.1007/s13391-011-0914-0 Mohanraman, 2014, Influence of in doping on the thermoelectric properties of an AgSbTe2 compound with enhanced figure of merit, J. Mater. Chem. A, 2, 2839, 10.1039/c3ta14547f Mohanraman, 2013, Enhanced thermoelectric performance in Bi-doped p-type AgSbTe2 compounds, J. Appl. Phys., 114, 5, 10.1063/1.4828478 Xu, 2010, High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2, J. Mater. Chem., 20, 6138, 10.1039/c0jm00138d Zhou, 2008, Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance, J. Am. Chem. Soc., 130, 4527, 10.1021/ja7110652 Pei, 2011, High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878 Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090 Jovovic, 2009, Doping effects on the thermoelectric properties of AgSbTe2, J. Electron. Mater., 38, 1504, 10.1007/s11664-009-0669-7 Morelli, 2008, Intrinsically minimal thermal conductivity in cubic I-V-VI(2) semiconductors, Phys. Rev. Lett., 101, 4, 10.1103/PhysRevLett.101.035901 Wang, 2008, Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound, Appl. Phys. Lett., 93, 3, 10.1063/1.3029774 Wojciechowski, 2009, Structural and thermoelectric properties of AgSbTe2-AgSbSe2 pseudobinary system, Phys. Rev. B, 79, 7, 10.1103/PhysRevB.79.184202 Marin, 1985, Phase-Equilibria in the Sb2Te3-Ag2Te system, J. Mater. Sci., 20, 730, 10.1007/BF01026548 Geller, 1959, Ternary semiconducting compounds with sodium chloride-like structure- AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2, Acta Crystallogr., 12, 46, 10.1107/S0365110X59000135 Castellero, 2017, Effects of rapid solidification on phase formation and microstructure evolution of AgSbTe2-based thermoelectric compounds, J. Nanosci. Nanotechnol., 17, 1650, 10.1166/jnn.2017.13736 Jovovic, 2008, Measurements of the energy band gap and valence band structure of AgSbTe2, Phys. Rev. B, 77, 8, 10.1103/PhysRevB.77.245204 Wolfe, 1960, Anomalous Hall effect in AgSbTe2, J. Appl. Phys., 31, 1959, 10.1063/1.1735479 Zhu, 2018, Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding, Adv. Mater., 30, 9, 10.1002/adma.201706735 Rosi, 1961, Semiconducting materials for thermoelctric power generation Rca review, 22, 82 Wood, 1988, Materials for thermoelectric energy-conversion, Rep. Prog. Phys., 51, 459, 10.1088/0034-4885/51/4/001 Wang, 2006, High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering, Appl. Phys. Lett., 88, 3, 10.1063/1.2181197 Cook, 2007, Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)(15)(GeTe)(85) thermoelectric material, J. Appl. Phys., 101, 6, 10.1063/1.2645675 Schroder, 2014, Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering, Inorg. Chem., 53, 7722, 10.1021/ic5010243 Yang, 2008, Nanostructures in high-performance (GeTe)(x)(AgSbTe(2))(100-x) thermoelectric materials, Nanotechnology, 19, 5, 10.1088/0957-4484/19/24/245707 Hsu, 2004, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science, 303, 818, 10.1126/science.1092963 Roychowdhury, 2017, Ultrahigh thermoelectric figure of merit and enhanced mechanical stability of p-type AgSb1-xZnxTe2, Acs Energy Lett., 2, 349, 10.1021/acsenergylett.6b00639 Sugar, 2010, Solid-state precipitation of stable and metastable layered compounds in thermoelectric AgSbTe2, J. Mater. Sci., 46, 1668, 10.1007/s10853-010-4984-4 Sharma, 2010, Influence of nanostructuring and heterogeneous nucleation on the thermoelectric figure of merit in AgSbTe2, J. Appl. Phys., 107, 9, 10.1063/1.3446094 Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv. Mater., 19, 1043, 10.1002/adma.200600527 Kim, 2016, Dislocation strain as the mechanism of phonon scattering at grain boundaries, Mater. Horiz., 3, 234, 10.1039/C5MH00299K Chen, 2017, Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence, Adv. Mater., 29, 8, 10.1002/adma.201606768 He, 2010, Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3Thermoelectric materials, Adv. Funct. Mater., 20, 764, 10.1002/adfm.200901905 Dames, 2005, Thermal conductivity of nanostructered thermoelectric materials Sharma, 2010, Influence of nanostructuring and heterogeneous nucleation on the thermoelectric figure of merit in AgSbTe2, J. Appl. Phys., 107, 10.1063/1.3446094 Amouyal, 2014, Reducing lattice thermal conductivity of the thermoelectric compound AgSbTe2 (P4/mmm) by lanthanum substitution: computational and experimental approaches, J. Electron. Mater., 43, 3772, 10.1007/s11664-014-3145-y Hong, 2018, Achieving zT > 2 in p-type AgSbTe2-xSex alloys via exploring the extra light valence band and introducing dense stacking faults, Adv. Energy Mater., 8, 7, 10.1002/aenm.201702333 Cojocaru-Miredin, 2017, Role of nanostructuring and microstructuring in silver antimony telluride compounds for thermoelectric applications, ACS Appl. Mater. Interfaces, 9, 14779, 10.1021/acsami.7b00689 Darwin, 1922, The reflexion of X-rays from imperfect crystals, Philos. Mag., 43, 800, 10.1080/14786442208633940 Zwicky, 1932, Secondary structure and mosaic structure of crystals, Phys. Rev., 40, 63, 10.1103/PhysRev.40.63 Er, 2014, Time-resolved X-ray diffraction studies of laser-induced acoustic wave propagation in bilayer metallic thin crystals, J. Appl. Phys., 116, 10.1063/1.4894177 Geis, 1992, Device quality diamond substrates, Diam. Relat. Mat., 1, 684, 10.1016/0925-9635(92)90191-P He, 2015, Ultrahigh thermoelectric performance in mosaic crystals, Adv. Mater., 27, 3639, 10.1002/adma.201501030 Zaefferer, 2014, Theory and application of electron channelling contrast imaging under controlled diffraction conditions, Acta Mater., 75, 20, 10.1016/j.actamat.2014.04.018 Callaway, 1960, Effect of point imperfections on lattice thermal conductivity, Phys. Rev., 120, 1149, 10.1103/PhysRev.120.1149 Schaffer, 2012, Sample preparation for atomic-resolution STEM at low voltages by FIB, Ultramicroscopy, 114, 62, 10.1016/j.ultramic.2012.01.005 Martin, 2004 Argaman, 1998, Density functional theory - an introduction, Am. J. Phys., 68, 69 Mishin, 2010, Atomistic modeling of interfaces and their impact on microstructure and properties, Acta Mater., 58, 1117, 10.1016/j.actamat.2009.10.049 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Perdew, 2007, Generalized gradient approximation for solids and their surfaces, Phys. Rev. Lett., 100, 1 Picard, 2014, Theory of dynamical electron channeling contrast images of near-surface crystal defects, Ultramicroscopy, 146, 71, 10.1016/j.ultramic.2014.07.006 Amouyal, 2016 Sugar, 2009, Precipitation of Ag2Te in the thermoelectric material AgSbTe2, J. Alloy. Comp., 478, 75, 10.1016/j.jallcom.2008.11.054 Amouyal, 2013, On the role of lanthanum substitution defects in reducing lattice thermal conductivity of the AgSbTe2 (P4/mmm) thermoelectric compound for energy conversion applications, Comput. Mater. Sci., 78, 98, 10.1016/j.commatsci.2013.05.027 Medlin, 2010, Interfacial defect structure at Sb2Te3 precipitates in the thermoelectric compound AgSbTe2, Scr. Mater., 62, 379, 10.1016/j.scriptamat.2009.11.028 Zhang, 2010, Phase compositions, nanoscale microstructures and thermoelectric properties in Ag2−ySbyTe1+y alloys with precipitated Sb2Te3 plates, Acta Mater., 58, 4160, 10.1016/j.actamat.2010.04.007 Ayral-Marin RM, 1990, Contribution to the study of AgSbTe2, Euro. J. Solid State Chem., 27, 747 Wu, 2011, Phase equilibria of Ag–Sb–Te thermoelectric materials, Acta Mater., 59, 6463, 10.1016/j.actamat.2011.07.010 Singh, 2006, Phonon conductivity of plastically deformed crystals: role of stacking faults and dislocations, Phys. Rev. B, 74, 6, 10.1103/PhysRevB.74.184302 Hong, 2018, Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping, Adv. Mater., 30, 8, 10.1002/adma.201705942 Hanus, 2019, Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency, Adv. Mater., 31, 10.1002/adma.201900108 Hanus, 2018, Phonon diffraction and dimensionality crossover in phonon-interface scattering, Commun. Phys., 1, 11, 10.1038/s42005-018-0070-z Klemens, 1957, Some scattering problems in conduction theory, Can. J. Phys., 35, 441, 10.1139/p57-048 Amouyal, 2016, Silver-antimony-telluride: from first-principles calculations to thermoelectric applications