Net Spaces and Boundedness of Integral Operators

The Journal of Geometric Analysis - Tập 21 - Trang 950-981 - 2010
Erlan Nursultanov1, Sergey Tikhonov2
1Gumilyov Eurasian National University, Astana, Kazakhstan
2ICREA and Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, Bellaterra (Barcelona), Spain

Tóm tắt

In this paper we introduce new functional spaces which we call net spaces. Using their properties, necessary and sufficient conditions for the integral operators to be of strong or weak type are obtained. Estimates of the norm of the convolution operator in weighted Lebesgue spaces are presented.

Tài liệu tham khảo

Andersen, K.F., Heinig, H.P.: Weighted norm inequalities for certain integral operators. SIAM J. Math. Anal. 14(4), 834–844 (1983) Andersen, K.F., Sawyer, E.T.: Weighted norm inequalities for the Riemann–Liouville and Weyl fractional integral operators. Trans. Am. Math. Soc. 308(2), 547–558 (1988) Aubakirov, T.U., Nursultanov, E.D.: Spaces of stochastic processes, interpolation theorems. Russ. Math. Surv. 61(6), 1167–1169 (2006) Boas, R.P.: The integrability class of the sine transform of a monotonic function. Studia Math. XLIV, 365–369 (1972) Benedetto, J.J., Heinig, H.P.: Fourier transform inequalities with measure weights. Adv. Math. 96(2), 194–225 (1992) Benedetto, J.J., Heinig, H.P.: Weighted Fourier inequalities: new proofs and generalizations. J. Fourier Anal. Appl. 9(1), 1–37 (2003) Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, New York (1988) Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976) Blozinski, A.P.: On a convolution theorem for L p,q spaces. Trans. Am. Math. Soc. 164, 255–265 (1972) Booton, B., Sagher, Y.: Norm inequalities for certain classes of functions and their Fourier transforms. J. Math. Anal. Appl. 335(2), 1416–1433 (2007) Bukhvalov, A.V.: The integral representation of linear operators. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklov 47, 5–14 (1974) (in Russian); Translation in J. Sov. Math. 9, 129–137 (1978) Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Am. Math. Soc. 187 (2007) Christ, M.: Weighted norm inequalities and Schur’s lemma. Studia Math. 78, 309–319 (1984) Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974) Dunford, N., Pettis, B.: Linear operations on summable functions. Trans. Am. Math. Soc. 47, 323–392 (1940) Edmunds, D., Kokilashvili, V., Meskhi, A.: Bounded and Compact Integral Operators. Mathematics and Its Applications, vol. 543. Kluwer Academic, Dordrecht (2002) Edmunds, D., Opic, B.: Equivalent quasi-norms on Lorentz spaces. Proc. Am. Math. Soc. 131(3), 745–754 (2003) Gagliardo, E.: On integral transformations with positive kernel. Proc. Am. Math. Soc. 16, 429–434 (1965) García-Cuerva, J., Rubio de Francia, J.: Weighted Norm Inequalities and Related Topics. North–Holland, Amsterdam (1985) Hernández, E.: Weighted inequalities through factorization. Publ. Mat. 35(1), 141–153 (1991) Hernández, E.: Factorization and extrapolation of pairs of weights. Studia Math. 95(2), 179–193 (1989) Jawerth, B.: Weighted inequalities for maximal operators: linearization, localization and factorization. Am. J. Math. 108, 361–414 (1986) Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2th edn. Oxford, Pergamon (1982) Kantorovich, L.V., Vulikh, B.Z.: Sur la representation des operations lineaires. Compos. Math. 5, 119–165 (1937) Kerman, R.A.: Convolution theorems with weights. Trans. Am. Math. Soc. 280(1), 207–219 (1983) Kostyuchenko, A.G., Nursultanov, E.D.: On integral operators in L p -spaces. Fundam. Prikl. Mat. 5(2), 475–491 (1999) Kufner, A., Persson, L.E.: Weighted inequalities of Hardy type. River Edge (2003) Liflyand, E., Tikhonov, S.: Extended solution of Boas’ conjecture on Fourier transforms. C. R. Math., Acad. Sci. Paris 346(21–22), 1137–1142 (2008) Mastroianni, G., Totik, V.: Weighted polynomial inequalities with doubling and A ∞ weights. Constr. Approx. 16(1), 37–71 (2000) Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938) Muckenhoupt, B.: Hardy’s inequality with weights. Studia Math. 44, 31–38 (1972) Nursultanov, E.D.: Net spaces and inequalities of Hardy–Littlewood type. Sb. Math. 189(3), 399–419 (1998); Translation from Mat. Sb. 180(3), 83–102 (1998) Nursultanov, E.D.: On the coefficients of multiple Fourier series in L p -spaces. Izv. RAN Ser. Mat. 64(1), 95–122 (2000) Nursultanov, E.D.: Nikol’skii’s inequality for different metrics and properties of the sequence of norms of the Fourier sums of a function in the Lorentz space. Proc. Steklov Inst. Math. 255, 185–202 (2006) O’Neil, R.: Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129–142 (1963) Sagher, Y.: Integrability conditions for the Fourier transform. J. Math. Anal. Appl. 54(1), 151–156 (1976) Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956) Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton (1971) Yap, L.Y.H.: Some remarks on convolution operators and l(p,q) spaces. Duke Math. J. 36, 647–658 (1969)