Analysis of hot deformation behavior of Al 5083–TiC nanocomposite using constitutive and dynamic material models

Materials & Design - Tập 37 - Trang 102-110 - 2012
V. Senthilkumar1, A. Balaji1, R. Narayanasamy1
1Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India

Tài liệu tham khảo

Hassan, 2006, Development of high strength magnesium copper based hybrid composites with enhanced tensile properties, Compos Struct, 72, 19, 10.1016/j.compstruct.2004.10.008 Laha, 2009, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming, Composites A, 40, 589, 10.1016/j.compositesa.2009.02.007 Santos-Beltrán, 2010, Mechanical and microstructural characterization of dispersion strengthened Al–C system nanocomposites, J Alloys Compd, 489, 626, 10.1016/j.jallcom.2009.09.133 Srinivasan, 2008, Hot deformation behaviour of Mg–3Al alloy – a study using processing map, Mater Sci Eng A, 476, 146, 10.1016/j.msea.2007.04.103 Raghunath, 2008, An investigation of hot deformation response of particulate-reinforced magnesium +9% titanium composite, Mater Des, 29, 622, 10.1016/j.matdes.2007.02.012 Bardi, 2003, An analysis of hot deformation of an Al–Cu–Mg alloy produced by powder metallurgy, Mater Sci Eng A, 339, 43, 10.1016/S0921-5093(02)00103-X Byung-Chul, 2000, Prediction of dynamic recrystallization condition by deformation efficiency for Al 2024 composite reinforced with SiC particle, J Mater Sci, 35, 4073, 10.1023/A:1004838305228 Radhakrishna Bhat, 2000, Effect of volume fraction of SiCp reinforcement on the processing maps for 2124 Al matrix composites, Mater Trans A, 31, 629, 10.1007/s11661-000-0006-5 Dejun, 2012, Hot deformation behavior of an austenitic Fe–20Mn–3Si–3Al transformation induced plasticity steel, Mater Des, 34, 713, 10.1016/j.matdes.2011.05.031 Cavaliere, 2004, Isothermal forging of AA2618 reinforced with 20% of alumina particles, Composites A, 35, 619, 10.1016/j.compositesa.2004.02.014 Lin, 2011, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater Des, 32, 1733, 10.1016/j.matdes.2010.11.048 Zhenjun, 2011, A constitutive model for predicting flow stress of Al18 B4 O33w/AZ91D composite during hot compression and its validation, Comput Mater Sci, 50, 2422, 10.1016/j.commatsci.2011.03.020 Prasad, 1997 Prasad, 2000, Processing maps for hot working of a P/M iron aluminide alloy, Intermetallics, 8, 1067, 10.1016/S0966-9795(00)00041-8 Narayana Murthy, 2000, Instability criteria for hot deformation of materials, Int Mater Rev, 41, 15, 10.1179/095066000771048782 Mazaherya, 2009, Development of high-performance A356/nano-Al2O3 composites, Mater Sci Eng A, 518, 61, 10.1016/j.msea.2009.04.014 Tun, 2009, Development of magnesium/(yttria+nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties, J Alloys Compd, 487, 76, 10.1016/j.jallcom.2009.07.117 Hassan, 2005, Strain rate effects on the mechanical properties of a Fe–Mn–Al alloy under dynamic impact deformations, Mater Sci Eng A, 392, 163, 10.1016/j.msea.2004.09.047 Shao, 2010, Constitutive flow behavior and hot workability of powder metallurgy processed 20vol% SiCp/2024Al composite, Mater sci eng A, 7865, 10.1016/j.msea.2010.08.080 Hosseinipour, 2009, An investigation into hot deformation of aluminum alloy 5083, Mater Des, 30, 319, 10.1016/j.matdes.2008.04.063 Rokni, 2011, An investigation into the hot deformation characteristics of 7075 aluminum alloy, Mater Des, 32, 2339, 10.1016/j.matdes.2010.12.047 Zhang, 2012, Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy, Mater Des, 34, 15, 10.1016/j.matdes.2011.07.061 Rao, 2011, Hot working behavior and processing map of a γ-TiAl alloy synthesized by powder metallurgy, Mater Des, 32, 4874, 10.1016/j.matdes.2011.06.003 Gang, 2009, Hot deformation and Processing maps of an Al-5.7%wt Mg alloy with erbium, Mater Sci Eng A, 517, 132, 10.1016/j.msea.2009.03.068 Poliak, 2003, Initiation of dynamic recrystallization in constant strain rate hot deformation, ISIJ Int, 426–432, 57 Prasad, 2009, Hot workability and deformation mechanisms in Mg/nano-Al2O3 composite, Compos Sci Technol, 69, 1070, 10.1016/j.compscitech.2009.01.032