The thermal and thermoelectric properties of in-plane C-BN hybrid structures and graphene/h-BN van der Waals heterostructures
Tài liệu tham khảo
Minnich, 2009, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ. Sci., 2, 466, 10.1039/b822664b
Majumdar, 2004, Thermoelectricity in semiconductor nanostructures, Science, 303, 777, 10.1126/science.1093164
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849
Liu, 2007, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B, 76, 064120, 10.1103/PhysRevB.76.064120
Zakharchenko, 2009, Finite temperature lattice properties of graphene beyond the quasiharmonic approximation, Phys. Rev. Lett., 102, 046808, 10.1103/PhysRevLett.102.046808
Sahin, 2009, Monolayer honeycomb structures of group IV elements and III-V binary compounds, Phys. Rev. B, 80, 155453, 10.1103/PhysRevB.80.155453
Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872
Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996
Wallace, 1947, The band theory of graphite, Phys. Rev., 71, 622, 10.1103/PhysRev.71.622
Reich, 2002, Tight-binding description of graphene, Phys. Rev. B, 66, 035412, 10.1103/PhysRevB.66.035412
Neto, 2010, The electronic properties of graphene, Vacuum, 244, 4106
Al-Jishi, 1982, Lattice dynamical model for graphite, Carbon, 20, 4514, 10.1016/0008-6223(82)90443-2
Li, 2003, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solid Struct., 40, 2487, 10.1016/S0020-7683(03)00056-8
Odegard, 2002, Equivalent-continuum modeling of nano-structured materials, Compos. Sci. Technol., 62, 1869, 10.1016/S0266-3538(02)00113-6
Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872
Nika, 2009, Lattice thermal conductivity of graphene flakes: comparison with bulk graphite, Appl. Phys. Lett., 94, 203103, 10.1063/1.3136860
Seol, 2010, Two-dimensional phonon transport in supported graphene, Science, 328, 213, 10.1126/science.1184014
Prasher, 2010, Graphene spreads the heat, Science, 328, 185, 10.1126/science.1188998
Cai, 2010, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10, 1645, 10.1021/nl9041966
Wang, 2011, Thermal transport in suspended and supported few-layer graphene, Nano Lett., 11, 113, 10.1021/nl102923q
Balandin1, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064
Ghosh, 2010, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater., 9, 555, 10.1038/nmat2753
Nika, 2009, Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering, Phys. Rev. B, 79, 155413, 10.1103/PhysRevB.79.155413
Koh, 2010, Heat conduction across monolayer and few-layer graphenes, Nano Lett., 10, 4363, 10.1021/nl101790k
Xu, 2009, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett., 95, 233116, 10.1063/1.3272678
Xu, 1954, Thermal transport in graphene junctions and quantum dots, Phys. Rev. B, 81, 25
Pan, 2012, Ballistic thermoelectric properties in graphene-nanoribbon-based heterojunctions, Appl. Phys. Lett., 101, 103115, 10.1063/1.4751287
Hu, 2011, Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons, Appl. Phys. Lett., 99, 113101, 10.1063/1.3630026
Ma, 2017, Tailoring the thermal and electrical transport properties of graphene films by grain size engineering, Nat. Commun., 8, 14486, 10.1038/ncomms14486
Sichel, 1976, Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride, Phys. Rev. B, 13, 4607, 10.1103/PhysRevB.13.4607
Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5
Liu, 2003, Structural and electronic properties of h -BN, Phys. Rev. B, 68, 104102, 10.1103/PhysRevB.68.104102
Alem, 2009, Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy, Phys. Rev. B, 80, 155425, 10.1103/PhysRevB.80.155425
Wang, 2016, Superior thermal conductivity in suspended bilayer hexagonal boron nitride, Sci. Rep., 6, 25334, 10.1038/srep25334
Arnaud, 2006, Huge excitonic effects in layered hexagonal boron nitride, Phys. Rev. Lett., 96, 026402, 10.1103/PhysRevLett.96.026402
Tabarraei, 2016, Anomalous thermal conductivity of monolayer boron nitride, Appl. Phys. Lett., 108, 181904, 10.1063/1.4948650
Lindsay, 2011, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride, Phys. Rev. B, 84, 155421, 10.1103/PhysRevB.84.155421
Lindsay, 2012, Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes, Phys. Rev. B, 85, 035436, 10.1103/PhysRevB.85.035436
Jo, 2013, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride, Nano Lett., 13, 550, 10.1021/nl304060g
Wang, 2016, Superior thermal conductivity in suspended bilayer hexagonal boron nitride, Sci. Rep., 6, 25334, 10.1038/srep25334
Haiqing, 2014, High thermal conductivity of suspended few-layer hexagonal boron nitride sheets, Nano Res., 7, 1232, 10.1007/s12274-014-0486-z
Mortazavi, 2012, Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations, Phys. E Low-dimens. Syst. Nanostruct., 44, 1846, 10.1016/j.physe.2012.05.007
Yang, 2011, Effect of triangle vacancy on thermal transport in boron nitride nanoribbons, Solid State Commun., 151, 460, 10.1016/j.ssc.2011.01.002
Ouyang, 2010, Thermal transport in hexagonal boron nitride nanoribbons, Nanotechnology, 21, 245701, 10.1088/0957-4484/21/24/245701
Zebarjadi, 2012, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C
Yan, 2010, Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3, Nano Lett., 10, 3373, 10.1021/nl101156v
Muto, 2009, Thermoelectric properties and efficiency measurements under large temperature differences, Rev. Sci. Instrum., 80, 093901, 10.1063/1.3212668
Xie, 2013, Ballistic thermoelectric properties in boron nitride nanoribbons, J. Appl. Phys., 114, 144311, 10.1063/1.4824750
Sevik, 2012, Influence of disorder on thermal transport properties of boron nitride nanostructures, Phys. Rev. B, 86, 075403, 10.1103/PhysRevB.86.075403
Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134
Dutta, 2009, Intrinsic half-metallicity in modified graphene nanoribbons, Phys. Rev. Lett., 102, 096601, 10.1103/PhysRevLett.102.096601
Ding, 2009, Electronic properties of graphene nanoribbons embedded in boron nitride sheets, Appl. Phys. Lett., 95, 123105, 10.1063/1.3234374
Pruneda, 2010, Origin of half-semimetallicity induced at interfaces of C-BN heterostructures, Phys. Rev. B, 81, 10.1103/PhysRevB.81.161409
Nakamura, 2005, Electronic and magnetic properties of BNC ribbons, Phys. Rev. B, 72, 205429, 10.1103/PhysRevB.72.205429
Ong, 2016, Controlling the thermal conductance of graphene/h-BN lateral interface with strain and structure engineering, Phys. Rev. B, 93, 075406, 10.1103/PhysRevB.93.075406
Ci, 2010, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater., 9, 430, 10.1038/nmat2711
Sevinçli, 2011, Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets, Phys. Rev. B, 84, 205444, 10.1103/PhysRevB.84.205444
Jiang, 2011, Minimum thermal conductance in graphene and boron nitride superlattice, Appl. Phys. Lett., 99, 043109, 10.1063/1.3619832
Kınacı, 2012, Thermal conductivity of BN-C nanostructures, Phys. Rev. B, 86, 115410, 10.1103/PhysRevB.86.115410
Chen, 2017, A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures, Appl. Phys. Lett., 110, 091907, 10.1063/1.4977776
Chen, 2016, Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction, Carbon, 100, 492, 10.1016/j.carbon.2016.01.045
Jiang, 2012, Manipulation of heat current by the interface between graphene and white graphene, EPL, 96, 16003, 10.1209/0295-5075/96/16003
Chen, 2014, Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction, Appl. Phys. Lett., 104, 081908, 10.1063/1.4866335
Liu, 2016, Topological defects at the graphene/h-BN interface abnormally enhance its thermal conductance, Nano Lett., 16, 4954, 10.1021/acs.nanolett.6b01565
Silva, 2016, Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride, Phys. Rev. B, 93, 125427, 10.1103/PhysRevB.93.125427
Barriosvargas, 2017, Electrical and thermal transport in coplanar polycrystalline graphene-hBN heterostructures, Nano Lett., 17, 660
Yang, 2012, Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons, Phys. Rev. B, 86, 045425, 10.1103/PhysRevB.86.045425
Hong, 2016, Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet, Phys. Chem. Chem. Phys., 18, 24164, 10.1039/C6CP03933B
Zhu, 2017, Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons, Phys. Chem. Chem. Phys., 19, 4085, 10.1039/C6CP07179A
Izadi Vishkayi, 2015, Enhancement of thermoelectric efficiency by embedding hexagonal boron-nitride cells in zigzag graphene nanoribbons, J. Phys. D Appl. Phys., 48, 235304, 10.1088/0022-3727/48/23/235304
Algharagholy, 2015, Tuning thermoelectric properties of graphene/boron nitride heterostructures, Nanotechnology, 26, 475401, 10.1088/0957-4484/26/47/475401
Tran, 2015, High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering, Nanotechnology, 26, 495202, 10.1088/0957-4484/26/49/495202
Yokomizo, 2013, Giant Seebeck coefficient of the graphene/h-BN superlattices, Appl. Phys. Lett., 103, 12727, 10.1063/1.4820820
Wang, 2015, Energetic and thermal properties of tilt grain boundaries in graphene/hexagonal boron nitride heterostructures, Funct. Mater. Lett., 8, 1550038, 10.1142/S1793604715500381
Yang, 2012, Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons, Phys. Rev. B, 86, 045425, 10.1103/PhysRevB.86.045425
Drost, 2014, Electronic states at the graphene–hexagonal boron nitride zigzag interface, Nano Lett., 14, 5128, 10.1021/nl501895h
Karamanis, 2015, Electric property variations in nanosized hexagonal boron nitride/graphene hybrids, J. Phys. Chem. C, 119, 11872, 10.1021/acs.jpcc.5b02793
Park, 2014, Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures, Nat. Commun., 5, 5403, 10.1038/ncomms6403
Zheng, 2013, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes, Nat. Nanotechnol., 8, 119, 10.1038/nnano.2012.256
Jung, 2012, Transport properties of graphene nanoroads in boron nitride sheets, Nano Lett., 12, 2936, 10.1021/nl300610w
Gao, 2012, Artificially stacked atomic layers: toward new van der Waals solids, Nano Lett., 12, 3518, 10.1021/nl301061b
Decker, 2011, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy, Nano Lett., 11, 2291, 10.1021/nl2005115
Argentero, 2017, Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure, Nano Lett., 17, 1409, 10.1021/acs.nanolett.6b04360
Chen, 2014, Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures, Nat. Commun., 5, 4461, 10.1038/ncomms5461
Hüser, 2013, Quasiparticle GW calculations for solids, molecules, and two-dimensional materials, Phys. Rev. B, 87, 235132, 10.1103/PhysRevB.87.235132
Xue, 2011, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nat. Mater., 10, 282, 10.1038/nmat2968
Sachs, 2012, Adhesion and electronic structure of graphene on hexagonal boron nitride substrates, Phys. Rev. B, 84, 195414, 10.1103/PhysRevB.84.195414
Moon, 2014, Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice, Phys. Rev. B, 90, 155406, 10.1103/PhysRevB.90.155406
Zhong, 2011, First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers, Phys. Rev. B, 83, 193403, 10.1103/PhysRevB.83.193403
Wang, 2016, Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride, Nat. Phys., 12, 1111, 10.1038/nphys3856
Giovannetti, 2007, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B, 76, 073103, 10.1103/PhysRevB.76.073103
Sanjose, 2014, Electronic structure of spontaneously strained graphene on hexagonal boron nitride, Phys. Rev. B, 90, 115152, 10.1103/PhysRevB.90.115152
Kim, 2013, Synthesis of patched or stacked graphene and hBN flakes: a route to hybrid structure discovery, Nano Lett., 13, 933, 10.1021/nl303760m
Fan, 2011, Tunable electronic structures of graphene/boron nitride heterobilayers, Appl. Phys. Lett., 98, 083103, 10.1063/1.3556640
Zhou, 2015, Van der Waals bilayer energetics: generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, 92, 155438, 10.1103/PhysRevB.92.155438
Kan, 2012, Why the band gap of graphene is tunable on hexagonal boron nitride, J. Phys. Chem. C, 116, 3142, 10.1021/jp2106988
Gholivand, 2017, Phonon mean free path in few layer graphene, hexagonal boron nitride, and composite bilayer h-BN/graphene, IEEE Trans. Nanotechnol., 16, 752, 10.1109/TNANO.2017.2672199
Jung, 2015, Vibrational properties of h-BN and h-BN-graphene heterostructures probed by inelastic electron tunneling spectroscopy, Sci. Rep., 5, 16642, 10.1038/srep16642
Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172
Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b
Zhang, 2017, Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation, Nanotechnology, 28, 225704, 10.1088/1361-6528/aa6e49
Cai, 2010, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10, 1645, 10.1021/nl9041966
Ong, 2012, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B, 84, 075471, 10.1103/PhysRevB.84.075471
Chen, 2012, Thermal transport in graphene supported on copper, J. Appl. Phys., 112, 043502, 10.1063/1.4740071
Guo, 2012, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Phys. Rev. B, 85, 235429, 10.1103/PhysRevB.85.235429
Chen, 2013, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene, Nanoscale, 5, 532, 10.1039/C2NR32949B
Wang, 2013, High performance of the thermal transport in graphene supported on hexagonal boron nitride, APEX, 6, 075202, 10.7567/APEX.6.075202
Pak, 2016, Theoretical analysis of thermal transport in graphene supported on hexagonal boron nitride: the importance of strong adhesion due to π -bond polarization, Phys.Rev.Appl., 6, 034015, 10.1103/PhysRevApplied.6.034015
Chen, 2014, Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction, Appl. Phys. Lett., 104, 081908, 10.1063/1.4866335
Qiu, 2012, Reduction of spectral phonon relaxation times from suspended to supported graphene, Appl. Phys. Lett., 100, 193101, 10.1063/1.4712041
Wei, 2014, Mode dependent lattice thermal conductivity of single layer graphene, J. Appl. Phys., 116, 153503, 10.1063/1.4898338
Zou, 2017, Phonon thermal properties of graphene on h-BN from molecular dynamics simulations, Appl. Phys. Lett., 110, 103106, 10.1063/1.4978434
Wang, 2016, Thermally induced graphene rotation on hexagonal boron nitride, Phys. Rev. Lett., 116, 126101, 10.1103/PhysRevLett.116.126101
Caldwell, 2014, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride, Nat. Commun., 5, 5221, 10.1038/ncomms6221
Basov, 2016, Polaritons in van der Waals materials, Science, 354, 10.1126/science.aag1992
Dai, 2014, Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride, Science, 343, 1125, 10.1126/science.1246833
Tielrooij, 2018, Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling, Nat. Nanotechnol., 13, 41, 10.1038/s41565-017-0008-8
Cadore, 2016, Thermally activated hysteresis in high quality graphene/h-BN devices, Appl. Phys. Lett., 108, 233101, 10.1063/1.4953162
Kretinin, 2014, Electronic properties of graphene encapsulated with different two-dimensional atomic crystals, Nano Lett., 14, 3270, 10.1021/nl5006542
Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b
Yan, 2016, Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures, Nanoscale, 8, 4037, 10.1039/C5NR06818E
Wang, 2015, First-Principles study of the transport properties of graphene-hexagonal boron nitride superlattice, J. Nanosci. Nanotechnol., 15, 3025, 10.1166/jnn.2015.9636
Li, 2016, Interfacial thermal resistance of 2D and 1D carbon/hexagonal boron nitride van der Waals heterostructures, Carbon, 105, 566, 10.1016/j.carbon.2016.05.001
Zhong, 2012, Graphene quilts for thermal management of high-power GaN transistors, Nat. Commun., 3, 827
Gao, 2013, Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots, Carbon, 61, 342, 10.1016/j.carbon.2013.05.014
Bao, 2016, Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging, J. Phys. D Appl. Phys., 49, 265501, 10.1088/0022-3727/49/26/265501
Chun-Chung, 2015, Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures, Nano Res., 8, 666, 10.1007/s12274-014-0550-8
Xu, 2014, One-dimensional surface phonon polaritons in boron nitride nanotubes, Nat. Commun., 5, 4782, 10.1038/ncomms5782
Shi, 2015, Amplitude- and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride, ACS Photon, 2, 790, 10.1021/acsphotonics.5b00007
Dai, 2015, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material, Nat. Commun., 6, 6963, 10.1038/ncomms7963
Yoxall, 2015, Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity, Nat. Photon., 9, 674, 10.1038/nphoton.2015.166
Woessner, 2015, Highly confined low-loss plasmons in graphene-boron nitride heterostructures, Nat. Mater., 14, 421, 10.1038/nmat4169
Dai, 2015, Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial, Nat. Nanotechnol., 10, 682, 10.1038/nnano.2015.131
Slotman, 2015, Phonons and electron-phonon coupling in graphene-h-BN heterostructures, Ann. Phys., 526, 381
Barcelos, 2015, Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy, Nanoscale, 7, 11620, 10.1039/C5NR01056J
Lin, 2017, All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures, Proc. Nat. Acad. Sci. U. S. A., 114, 6717, 10.1073/pnas.1701830114
Woessner, 2017, Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride, 2D Mat. Appl., 1
Zhang, 2015, Thermal transport across graphene and single layer hexagonal boron nitride, J. Appl. Phys., 117, 134307, 10.1063/1.4916985
Vandecasteele, 2010, Current-voltage characteristics of graphene devices: interplay between Zener-Klein tunneling and defects, Phys. Rev. B, 82, 045416, 10.1103/PhysRevB.82.045416
Kané, 2015, High-field transport in graphene: the impact of Zener tunneling, J. Phys. Condens. Matter, 27, 164205, 10.1088/0953-8984/27/16/164205
Guo, 2012, Broadband super-Planckian thermal emission from hyperbolic metamaterials, Appl. Phys. Lett., 101, 131106, 10.1063/1.4754616
Biehs, 2012, Hyperbolic metamaterials as an analog of a blackbody in the near field, Phys. Rev. Lett., 109, 104301, 10.1103/PhysRevLett.109.104301
Yang, 2017, A graphene Zener-Klein transistor cooled by a hyperbolic substrate, Nat. Nanotechnol., 13, 47, 10.1038/s41565-017-0007-9
Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Cheminform Mater. Today Phys., 19, 1043
Shuai, 2017, Recent progress and future challenges on thermoelectric Zintl materials, Mater. Today Phys., 1, 74, 10.1016/j.mtphys.2017.06.003
Liu, 2017, New trends, strategies and opportunities in thermoelectric materials: a perspective, Mater. Today Phys., 1, 50, 10.1016/j.mtphys.2017.06.001
Zhao, 2014, High thermoelectric performance of MgAgSb-based materials, Nano Energy, 7, 97, 10.1016/j.nanoen.2014.04.012
Chang, 2018, Anharmoncity and low thermal conductivity in thermoelectrics, Mater. Today Phys., 4, 50, 10.1016/j.mtphys.2018.02.005
Liu, 2017, Tellurium doped n-type Zintl Zr3Ni3Sb4 thermoelectric materials: balance between carrier-scattering mechanism and bipolar effect, Mater. Today Phys., 2, 54, 10.1016/j.mtphys.2017.08.002
Takaki, 2017, Thermoelectric properties of a magnetic semiconductor CuFeS2, Mater. Today Phys., 3, 85, 10.1016/j.mtphys.2017.12.006
Mao, 2017, Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5, Mater. Today Phys., 3, 1, 10.1016/j.mtphys.2017.08.001
He, 2017, Improved thermoelectric performance of n-type half-Heusler MCo 1-x NixSb (M=Hf, Zr), Mater. Today Phys., 1, 24, 10.1016/j.mtphys.2017.05.002
de Gironcoli, 1995, Lattice dynamics of metals from density-functional perturbation theory, Phys. Rev. B, 51, 6773, 10.1103/PhysRevB.51.6773
Wang, 2017, Optical, photonic and optoelectronic properties of graphene, h-NB and their hybrid materials, Nanophotonics, 6, 10.1515/nanoph-2017-0015
Wang, 2017, Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures, Mater. Today Phys., 2, 6, 10.1016/j.mtphys.2017.07.001
Wang, 2017, Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride, Mater. Today Phys., 3, 93, 10.1016/j.mtphys.2017.10.003