The thermal and thermoelectric properties of in-plane C-BN hybrid structures and graphene/h-BN van der Waals heterostructures

Materials Today Physics - Tập 5 - Trang 29-57 - 2018
Jingang Wang1,2,3, Xijiao Mu2, Xinxin Wang2,4, Nan Wang1, Fengcai Ma3, Wenjie Liang4, Mengtao Sun2
1College of Science, Liaoning Shihua University, Fushun, 113001, PR China
2School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Center for Green Innovation, University of Science and Technology Beijing, Beijing, 100083, PR China
3Department of Physics, Liaoning University, Shenyang 110036, PR China
4Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100080, PR China

Tài liệu tham khảo

Minnich, 2009, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ. Sci., 2, 466, 10.1039/b822664b Majumdar, 2004, Thermoelectricity in semiconductor nanostructures, Science, 303, 777, 10.1126/science.1093164 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 Liu, 2007, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B, 76, 064120, 10.1103/PhysRevB.76.064120 Zakharchenko, 2009, Finite temperature lattice properties of graphene beyond the quasiharmonic approximation, Phys. Rev. Lett., 102, 046808, 10.1103/PhysRevLett.102.046808 Sahin, 2009, Monolayer honeycomb structures of group IV elements and III-V binary compounds, Phys. Rev. B, 80, 155453, 10.1103/PhysRevB.80.155453 Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996 Wallace, 1947, The band theory of graphite, Phys. Rev., 71, 622, 10.1103/PhysRev.71.622 Reich, 2002, Tight-binding description of graphene, Phys. Rev. B, 66, 035412, 10.1103/PhysRevB.66.035412 Neto, 2010, The electronic properties of graphene, Vacuum, 244, 4106 Al-Jishi, 1982, Lattice dynamical model for graphite, Carbon, 20, 4514, 10.1016/0008-6223(82)90443-2 Li, 2003, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solid Struct., 40, 2487, 10.1016/S0020-7683(03)00056-8 Odegard, 2002, Equivalent-continuum modeling of nano-structured materials, Compos. Sci. Technol., 62, 1869, 10.1016/S0266-3538(02)00113-6 Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872 Nika, 2009, Lattice thermal conductivity of graphene flakes: comparison with bulk graphite, Appl. Phys. Lett., 94, 203103, 10.1063/1.3136860 Seol, 2010, Two-dimensional phonon transport in supported graphene, Science, 328, 213, 10.1126/science.1184014 Prasher, 2010, Graphene spreads the heat, Science, 328, 185, 10.1126/science.1188998 Cai, 2010, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10, 1645, 10.1021/nl9041966 Wang, 2011, Thermal transport in suspended and supported few-layer graphene, Nano Lett., 11, 113, 10.1021/nl102923q Balandin1, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064 Ghosh, 2010, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater., 9, 555, 10.1038/nmat2753 Nika, 2009, Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering, Phys. Rev. B, 79, 155413, 10.1103/PhysRevB.79.155413 Koh, 2010, Heat conduction across monolayer and few-layer graphenes, Nano Lett., 10, 4363, 10.1021/nl101790k Xu, 2009, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett., 95, 233116, 10.1063/1.3272678 Xu, 1954, Thermal transport in graphene junctions and quantum dots, Phys. Rev. B, 81, 25 Pan, 2012, Ballistic thermoelectric properties in graphene-nanoribbon-based heterojunctions, Appl. Phys. Lett., 101, 103115, 10.1063/1.4751287 Hu, 2011, Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons, Appl. Phys. Lett., 99, 113101, 10.1063/1.3630026 Ma, 2017, Tailoring the thermal and electrical transport properties of graphene films by grain size engineering, Nat. Commun., 8, 14486, 10.1038/ncomms14486 Sichel, 1976, Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride, Phys. Rev. B, 13, 4607, 10.1103/PhysRevB.13.4607 Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater. Today, 15, 256, 10.1016/S1369-7021(12)70116-5 Liu, 2003, Structural and electronic properties of h -BN, Phys. Rev. B, 68, 104102, 10.1103/PhysRevB.68.104102 Alem, 2009, Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy, Phys. Rev. B, 80, 155425, 10.1103/PhysRevB.80.155425 Wang, 2016, Superior thermal conductivity in suspended bilayer hexagonal boron nitride, Sci. Rep., 6, 25334, 10.1038/srep25334 Arnaud, 2006, Huge excitonic effects in layered hexagonal boron nitride, Phys. Rev. Lett., 96, 026402, 10.1103/PhysRevLett.96.026402 Tabarraei, 2016, Anomalous thermal conductivity of monolayer boron nitride, Appl. Phys. Lett., 108, 181904, 10.1063/1.4948650 Lindsay, 2011, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride, Phys. Rev. B, 84, 155421, 10.1103/PhysRevB.84.155421 Lindsay, 2012, Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes, Phys. Rev. B, 85, 035436, 10.1103/PhysRevB.85.035436 Jo, 2013, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride, Nano Lett., 13, 550, 10.1021/nl304060g Wang, 2016, Superior thermal conductivity in suspended bilayer hexagonal boron nitride, Sci. Rep., 6, 25334, 10.1038/srep25334 Haiqing, 2014, High thermal conductivity of suspended few-layer hexagonal boron nitride sheets, Nano Res., 7, 1232, 10.1007/s12274-014-0486-z Mortazavi, 2012, Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations, Phys. E Low-dimens. Syst. Nanostruct., 44, 1846, 10.1016/j.physe.2012.05.007 Yang, 2011, Effect of triangle vacancy on thermal transport in boron nitride nanoribbons, Solid State Commun., 151, 460, 10.1016/j.ssc.2011.01.002 Ouyang, 2010, Thermal transport in hexagonal boron nitride nanoribbons, Nanotechnology, 21, 245701, 10.1088/0957-4484/21/24/245701 Zebarjadi, 2012, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C Yan, 2010, Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3, Nano Lett., 10, 3373, 10.1021/nl101156v Muto, 2009, Thermoelectric properties and efficiency measurements under large temperature differences, Rev. Sci. Instrum., 80, 093901, 10.1063/1.3212668 Xie, 2013, Ballistic thermoelectric properties in boron nitride nanoribbons, J. Appl. Phys., 114, 144311, 10.1063/1.4824750 Sevik, 2012, Influence of disorder on thermal transport properties of boron nitride nanostructures, Phys. Rev. B, 86, 075403, 10.1103/PhysRevB.86.075403 Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134 Dutta, 2009, Intrinsic half-metallicity in modified graphene nanoribbons, Phys. Rev. Lett., 102, 096601, 10.1103/PhysRevLett.102.096601 Ding, 2009, Electronic properties of graphene nanoribbons embedded in boron nitride sheets, Appl. Phys. Lett., 95, 123105, 10.1063/1.3234374 Pruneda, 2010, Origin of half-semimetallicity induced at interfaces of C-BN heterostructures, Phys. Rev. B, 81, 10.1103/PhysRevB.81.161409 Nakamura, 2005, Electronic and magnetic properties of BNC ribbons, Phys. Rev. B, 72, 205429, 10.1103/PhysRevB.72.205429 Ong, 2016, Controlling the thermal conductance of graphene/h-BN lateral interface with strain and structure engineering, Phys. Rev. B, 93, 075406, 10.1103/PhysRevB.93.075406 Ci, 2010, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater., 9, 430, 10.1038/nmat2711 Sevinçli, 2011, Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets, Phys. Rev. B, 84, 205444, 10.1103/PhysRevB.84.205444 Jiang, 2011, Minimum thermal conductance in graphene and boron nitride superlattice, Appl. Phys. Lett., 99, 043109, 10.1063/1.3619832 Kınacı, 2012, Thermal conductivity of BN-C nanostructures, Phys. Rev. B, 86, 115410, 10.1103/PhysRevB.86.115410 Chen, 2017, A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures, Appl. Phys. Lett., 110, 091907, 10.1063/1.4977776 Chen, 2016, Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction, Carbon, 100, 492, 10.1016/j.carbon.2016.01.045 Jiang, 2012, Manipulation of heat current by the interface between graphene and white graphene, EPL, 96, 16003, 10.1209/0295-5075/96/16003 Chen, 2014, Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction, Appl. Phys. Lett., 104, 081908, 10.1063/1.4866335 Liu, 2016, Topological defects at the graphene/h-BN interface abnormally enhance its thermal conductance, Nano Lett., 16, 4954, 10.1021/acs.nanolett.6b01565 Silva, 2016, Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride, Phys. Rev. B, 93, 125427, 10.1103/PhysRevB.93.125427 Barriosvargas, 2017, Electrical and thermal transport in coplanar polycrystalline graphene-hBN heterostructures, Nano Lett., 17, 660 Yang, 2012, Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons, Phys. Rev. B, 86, 045425, 10.1103/PhysRevB.86.045425 Hong, 2016, Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet, Phys. Chem. Chem. Phys., 18, 24164, 10.1039/C6CP03933B Zhu, 2017, Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons, Phys. Chem. Chem. Phys., 19, 4085, 10.1039/C6CP07179A Izadi Vishkayi, 2015, Enhancement of thermoelectric efficiency by embedding hexagonal boron-nitride cells in zigzag graphene nanoribbons, J. Phys. D Appl. Phys., 48, 235304, 10.1088/0022-3727/48/23/235304 Algharagholy, 2015, Tuning thermoelectric properties of graphene/boron nitride heterostructures, Nanotechnology, 26, 475401, 10.1088/0957-4484/26/47/475401 Tran, 2015, High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering, Nanotechnology, 26, 495202, 10.1088/0957-4484/26/49/495202 Yokomizo, 2013, Giant Seebeck coefficient of the graphene/h-BN superlattices, Appl. Phys. Lett., 103, 12727, 10.1063/1.4820820 Wang, 2015, Energetic and thermal properties of tilt grain boundaries in graphene/hexagonal boron nitride heterostructures, Funct. Mater. Lett., 8, 1550038, 10.1142/S1793604715500381 Yang, 2012, Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons, Phys. Rev. B, 86, 045425, 10.1103/PhysRevB.86.045425 Drost, 2014, Electronic states at the graphene–hexagonal boron nitride zigzag interface, Nano Lett., 14, 5128, 10.1021/nl501895h Karamanis, 2015, Electric property variations in nanosized hexagonal boron nitride/graphene hybrids, J. Phys. Chem. C, 119, 11872, 10.1021/acs.jpcc.5b02793 Park, 2014, Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures, Nat. Commun., 5, 5403, 10.1038/ncomms6403 Zheng, 2013, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes, Nat. Nanotechnol., 8, 119, 10.1038/nnano.2012.256 Jung, 2012, Transport properties of graphene nanoroads in boron nitride sheets, Nano Lett., 12, 2936, 10.1021/nl300610w Gao, 2012, Artificially stacked atomic layers: toward new van der Waals solids, Nano Lett., 12, 3518, 10.1021/nl301061b Decker, 2011, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy, Nano Lett., 11, 2291, 10.1021/nl2005115 Argentero, 2017, Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure, Nano Lett., 17, 1409, 10.1021/acs.nanolett.6b04360 Chen, 2014, Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures, Nat. Commun., 5, 4461, 10.1038/ncomms5461 Hüser, 2013, Quasiparticle GW calculations for solids, molecules, and two-dimensional materials, Phys. Rev. B, 87, 235132, 10.1103/PhysRevB.87.235132 Xue, 2011, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nat. Mater., 10, 282, 10.1038/nmat2968 Sachs, 2012, Adhesion and electronic structure of graphene on hexagonal boron nitride substrates, Phys. Rev. B, 84, 195414, 10.1103/PhysRevB.84.195414 Moon, 2014, Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice, Phys. Rev. B, 90, 155406, 10.1103/PhysRevB.90.155406 Zhong, 2011, First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers, Phys. Rev. B, 83, 193403, 10.1103/PhysRevB.83.193403 Wang, 2016, Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride, Nat. Phys., 12, 1111, 10.1038/nphys3856 Giovannetti, 2007, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B, 76, 073103, 10.1103/PhysRevB.76.073103 Sanjose, 2014, Electronic structure of spontaneously strained graphene on hexagonal boron nitride, Phys. Rev. B, 90, 115152, 10.1103/PhysRevB.90.115152 Kim, 2013, Synthesis of patched or stacked graphene and hBN flakes: a route to hybrid structure discovery, Nano Lett., 13, 933, 10.1021/nl303760m Fan, 2011, Tunable electronic structures of graphene/boron nitride heterobilayers, Appl. Phys. Lett., 98, 083103, 10.1063/1.3556640 Zhou, 2015, Van der Waals bilayer energetics: generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, 92, 155438, 10.1103/PhysRevB.92.155438 Kan, 2012, Why the band gap of graphene is tunable on hexagonal boron nitride, J. Phys. Chem. C, 116, 3142, 10.1021/jp2106988 Gholivand, 2017, Phonon mean free path in few layer graphene, hexagonal boron nitride, and composite bilayer h-BN/graphene, IEEE Trans. Nanotechnol., 16, 752, 10.1109/TNANO.2017.2672199 Jung, 2015, Vibrational properties of h-BN and h-BN-graphene heterostructures probed by inelastic electron tunneling spectroscopy, Sci. Rep., 5, 16642, 10.1038/srep16642 Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172 Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b Zhang, 2017, Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation, Nanotechnology, 28, 225704, 10.1088/1361-6528/aa6e49 Cai, 2010, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10, 1645, 10.1021/nl9041966 Ong, 2012, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B, 84, 075471, 10.1103/PhysRevB.84.075471 Chen, 2012, Thermal transport in graphene supported on copper, J. Appl. Phys., 112, 043502, 10.1063/1.4740071 Guo, 2012, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Phys. Rev. B, 85, 235429, 10.1103/PhysRevB.85.235429 Chen, 2013, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene, Nanoscale, 5, 532, 10.1039/C2NR32949B Wang, 2013, High performance of the thermal transport in graphene supported on hexagonal boron nitride, APEX, 6, 075202, 10.7567/APEX.6.075202 Pak, 2016, Theoretical analysis of thermal transport in graphene supported on hexagonal boron nitride: the importance of strong adhesion due to π -bond polarization, Phys.Rev.Appl., 6, 034015, 10.1103/PhysRevApplied.6.034015 Chen, 2014, Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction, Appl. Phys. Lett., 104, 081908, 10.1063/1.4866335 Qiu, 2012, Reduction of spectral phonon relaxation times from suspended to supported graphene, Appl. Phys. Lett., 100, 193101, 10.1063/1.4712041 Wei, 2014, Mode dependent lattice thermal conductivity of single layer graphene, J. Appl. Phys., 116, 153503, 10.1063/1.4898338 Zou, 2017, Phonon thermal properties of graphene on h-BN from molecular dynamics simulations, Appl. Phys. Lett., 110, 103106, 10.1063/1.4978434 Wang, 2016, Thermally induced graphene rotation on hexagonal boron nitride, Phys. Rev. Lett., 116, 126101, 10.1103/PhysRevLett.116.126101 Caldwell, 2014, Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride, Nat. Commun., 5, 5221, 10.1038/ncomms6221 Basov, 2016, Polaritons in van der Waals materials, Science, 354, 10.1126/science.aag1992 Dai, 2014, Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride, Science, 343, 1125, 10.1126/science.1246833 Tielrooij, 2018, Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling, Nat. Nanotechnol., 13, 41, 10.1038/s41565-017-0008-8 Cadore, 2016, Thermally activated hysteresis in high quality graphene/h-BN devices, Appl. Phys. Lett., 108, 233101, 10.1063/1.4953162 Kretinin, 2014, Electronic properties of graphene encapsulated with different two-dimensional atomic crystals, Nano Lett., 14, 3270, 10.1021/nl5006542 Mayorov, 2011, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett., 11, 2396, 10.1021/nl200758b Yan, 2016, Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures, Nanoscale, 8, 4037, 10.1039/C5NR06818E Wang, 2015, First-Principles study of the transport properties of graphene-hexagonal boron nitride superlattice, J. Nanosci. Nanotechnol., 15, 3025, 10.1166/jnn.2015.9636 Li, 2016, Interfacial thermal resistance of 2D and 1D carbon/hexagonal boron nitride van der Waals heterostructures, Carbon, 105, 566, 10.1016/j.carbon.2016.05.001 Zhong, 2012, Graphene quilts for thermal management of high-power GaN transistors, Nat. Commun., 3, 827 Gao, 2013, Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots, Carbon, 61, 342, 10.1016/j.carbon.2013.05.014 Bao, 2016, Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging, J. Phys. D Appl. Phys., 49, 265501, 10.1088/0022-3727/49/26/265501 Chun-Chung, 2015, Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures, Nano Res., 8, 666, 10.1007/s12274-014-0550-8 Xu, 2014, One-dimensional surface phonon polaritons in boron nitride nanotubes, Nat. Commun., 5, 4782, 10.1038/ncomms5782 Shi, 2015, Amplitude- and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride, ACS Photon, 2, 790, 10.1021/acsphotonics.5b00007 Dai, 2015, Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material, Nat. Commun., 6, 6963, 10.1038/ncomms7963 Yoxall, 2015, Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity, Nat. Photon., 9, 674, 10.1038/nphoton.2015.166 Woessner, 2015, Highly confined low-loss plasmons in graphene-boron nitride heterostructures, Nat. Mater., 14, 421, 10.1038/nmat4169 Dai, 2015, Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial, Nat. Nanotechnol., 10, 682, 10.1038/nnano.2015.131 Slotman, 2015, Phonons and electron-phonon coupling in graphene-h-BN heterostructures, Ann. Phys., 526, 381 Barcelos, 2015, Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy, Nanoscale, 7, 11620, 10.1039/C5NR01056J Lin, 2017, All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures, Proc. Nat. Acad. Sci. U. S. A., 114, 6717, 10.1073/pnas.1701830114 Woessner, 2017, Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride, 2D Mat. Appl., 1 Zhang, 2015, Thermal transport across graphene and single layer hexagonal boron nitride, J. Appl. Phys., 117, 134307, 10.1063/1.4916985 Vandecasteele, 2010, Current-voltage characteristics of graphene devices: interplay between Zener-Klein tunneling and defects, Phys. Rev. B, 82, 045416, 10.1103/PhysRevB.82.045416 Kané, 2015, High-field transport in graphene: the impact of Zener tunneling, J. Phys. Condens. Matter, 27, 164205, 10.1088/0953-8984/27/16/164205 Guo, 2012, Broadband super-Planckian thermal emission from hyperbolic metamaterials, Appl. Phys. Lett., 101, 131106, 10.1063/1.4754616 Biehs, 2012, Hyperbolic metamaterials as an analog of a blackbody in the near field, Phys. Rev. Lett., 109, 104301, 10.1103/PhysRevLett.109.104301 Yang, 2017, A graphene Zener-Klein transistor cooled by a hyperbolic substrate, Nat. Nanotechnol., 13, 47, 10.1038/s41565-017-0007-9 Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Cheminform Mater. Today Phys., 19, 1043 Shuai, 2017, Recent progress and future challenges on thermoelectric Zintl materials, Mater. Today Phys., 1, 74, 10.1016/j.mtphys.2017.06.003 Liu, 2017, New trends, strategies and opportunities in thermoelectric materials: a perspective, Mater. Today Phys., 1, 50, 10.1016/j.mtphys.2017.06.001 Zhao, 2014, High thermoelectric performance of MgAgSb-based materials, Nano Energy, 7, 97, 10.1016/j.nanoen.2014.04.012 Chang, 2018, Anharmoncity and low thermal conductivity in thermoelectrics, Mater. Today Phys., 4, 50, 10.1016/j.mtphys.2018.02.005 Liu, 2017, Tellurium doped n-type Zintl Zr3Ni3Sb4 thermoelectric materials: balance between carrier-scattering mechanism and bipolar effect, Mater. Today Phys., 2, 54, 10.1016/j.mtphys.2017.08.002 Takaki, 2017, Thermoelectric properties of a magnetic semiconductor CuFeS2, Mater. Today Phys., 3, 85, 10.1016/j.mtphys.2017.12.006 Mao, 2017, Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5, Mater. Today Phys., 3, 1, 10.1016/j.mtphys.2017.08.001 He, 2017, Improved thermoelectric performance of n-type half-Heusler MCo 1-x NixSb (M=Hf, Zr), Mater. Today Phys., 1, 24, 10.1016/j.mtphys.2017.05.002 de Gironcoli, 1995, Lattice dynamics of metals from density-functional perturbation theory, Phys. Rev. B, 51, 6773, 10.1103/PhysRevB.51.6773 Wang, 2017, Optical, photonic and optoelectronic properties of graphene, h-NB and their hybrid materials, Nanophotonics, 6, 10.1515/nanoph-2017-0015 Wang, 2017, Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures, Mater. Today Phys., 2, 6, 10.1016/j.mtphys.2017.07.001 Wang, 2017, Magnetics and spintronics on two-dimensional composite materials of graphene/hexagonal boron nitride, Mater. Today Phys., 3, 93, 10.1016/j.mtphys.2017.10.003