Young Integrals and SPDEs

Massimiliano Gubinelli1, Antoine Lejay2, Samy Tindel3
1Dip. di Matematica Applicata “U. Dini”, Università di Pisa, Pisa, Italy
2Project OMEGA, INRIA Lorraine, IECN, Campus Scientifique, Vandœuvre-lès-Nancy Cedex, France
3Institut Elie Cartan, Université Henri Poincaré (Nancy), Vandœuvre-lès-Nancy Cedex, France

Tóm tắt

In this note, we study the non-linear evolution problem $$dY_t = -A Y_t dt + B(Y_t) dX_t,$$ where $X$ is a $\gamma$ -Hölder continuous function of the time parameter, with values in a distribution space, and $-A$ the generator of an analytical semigroup. Then, we will give some sharp conditions on $X$ in order to solve the above equation in a function space, first in the linear case (for any value of $\gamma$ in $(0,1)$ ), and then when $B$ satisfies some Lipschitz type conditions (for $\gamma>1/2$ ). The solution of the evolution problem will be understood in the mild sense, and the integrals involved in that definition will be of Young type.

Từ khóa


Tài liệu tham khảo

Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, volume 44 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1992) Duncan, T., Maslowski, B., Pasik-Duncan, B.: Fractional Brownian motion and stochastic equations in Hilbert spaces. Stochastic Dynamics 2(2), 225–250 (2002) Engel, K.-J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations, volume 194 of Graduate Texts in Mathematics. Springer, Berlin Heidelberg New York (2000) Fattorini, H.O.: Infinite-dimensional Optimization and Control Theory, volume 62 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999) Grecksch, W., Anh, V.: A parabolic stochastic differential equation with fractional Brownian motion input. Statist. Probab. Lett. 41(4), 337–346 (1999) Gubinelli, M.: Controlling rough paths. J. Func. Anal. 216, 86–140 (2004) Hu, Y., Oksendal, B., Zhang, T.: General fractional multiparameter white noise theory and stochastic partial differential equations. Comm. Partial Differential Equations 29(1–2), 1–23 (2004) Lejay, A.: An introduction to rough paths. In: Séminaire de Probabilités XXXVII, volume 1832 of Lecture Notes in Mathematics, pp. 1–59. Springer, Berlin Heidelberg New York (2003) Ledoux, M., Lyons, T., Qian, Z.: Lévy area of Wiener processes in Banach spaces. Ann. Appl. Probab. 30(2), 546–578 (2002) Lyons, T., Qian, Z.: System control and rough paths. Oxford University Press, London (2002) Lyons, T.: Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14(2), 215–310 (1998) Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. 202(1), 277–305 (2003) Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences. Springer, Berlin Heidelberg New York (1983) Tindel, S., Tudor, C.A., Viens, F.: Stochastic evolution equations with fractional Brownian motion. Probab. Theory Related Fields 127(2), 186–204 (2003) Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d'été de probabilités de Saint-Flour, XIV-1984, volume 1180 of Lecture Notes in Math., pp. 265–439. Springer, Berlin Heidelberg New York (1986) Young, L.C.: An inequality of hölder type, connected with stieljes integration. Acta Math. 67, 251–282 (1936) Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111(3), 333–374 (1998)