Divisors on Principally Polarized Abelian Varieties
Tóm tắt
The purpose of this paper is to show how generalizations of generic vanishing theorems to a ℚ -divisor setting can be used to study the geometric properties of pluritheta divisors on a principally polarized Abelian variety (PPAV for short).
Tài liệu tham khảo
Andreotti, A. and Mayer, A.: On period relations for Abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa 21 (1967), 189–238.
Albarello, E. and DeConcini, C.: Another proof of a conjecture of S. D. Novikov on periods of Abelian integrals on Riemann surfaces, Duke Math. J. 54 (1987), 163–178.
Biswas, I.: On cohomology of parabolic line bundles, Preprint, 1996.
Demailly, J. P.: Theorie de Hodge L 2 et theorems d'annulation, Société Mathématique de France, 1996.
Dunio, H.: Ñber Generische Verschwindungssatze, Diplomarbeit, Essen (1991).
Ein, L.: Multiplier ideals, vanishing theorem and applications. In: Algebraic Geometry (Santa Cruz 1995), Proc. Sympos. Pure Math. 62(1), Amer. Math. Soc., Providence, RI, 1997, pp. 203–219.
Ein, L. and Lazarsfeld, R.: Singularities of theta divisors, and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), 243–258.
Esnault, H. and Viehweg, E.: Lectures on Vanishing Theorems, Birkhauser, Basel, 1992.
Esnault, H. and Viehweg, E.: Logarithmic De Rham complexes and vanishing theorems, Invent. Math. 86 (1986), 161–194.
Green, M. and Lazarsfeld, R.: Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389–407.
Green, M. and Lazarsfeld, R.: Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991), 87–103.
Kollár, J.: Shafarevich Maps and Automorphic Forms, Princeton University Press, 1995.
Kempf, G.: On the geometry of a theorem of Riemann Ann. of Math. 98 (1973), 178–185.
Lange, H. and Birkenhake, C.: Complex Abelian Varieties, Grundlehren Math. Wiss., Springer-Verlag, New York.
Mukai, S.: Duality between D(X) and D.(\(\hat X\)), with application to Picard sheaves, Nagoya math. J. 81 (1981), 153–175.
Nadel, A.M.: Multiplier ideal sheaves and Kahler–Einstein metrics of positive scalar curvature Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 7299–7300 and Ann. of Math. 132 (1990), 549–596.
Simpson, C.: Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. (4) 26 (1993), 361–401.
Skoda, K.H.: Sous-ensembles analytiques d'orde fini ou infini dans ℂn, Bull. Soc. Math. France 100 (1972), 353–408.
Timmerscheidt, K.: Mixed Hodge theory for unitary local systems, J. reine angew. Math. 379 (1987), 152–171.