Cardiac dynamics: a simplified model for action potential propagation
Tóm tắt
This paper analyzes a new semiphysiological ionic model, used recently to study reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)]. The aim of the model is to reproduce action potencial morphologies and restitution curves obtained, either from experimental data, or from more complex electrophysiological models. The model divides all ion currents into four groups according to their function, thus resulting into fast-slow and inward-outward currents. We show that this simplified model is flexible enough as to accurately capture the electrical properties of cardiac myocytes, having the advantage of being less computational demanding than detailed electrophysiological models. Under some conditions, it has been shown to be amenable to mathematical analysis. The model reproduces the action potential (AP) change with stimulation rate observed both experimentally and in realistic models of healthy human and guinea pig myocytes (TNNP and LRd models, respectively). When simulated in a cable it also gives the right dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing correctly these restitution properties, it also gives a good fit for the morphology of the AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP propagation and the ECG. Thus, this simplified model represents an alternative to more complex models when studying instabilities in wave propagation.
Tài liệu tham khảo
Hodgkin A, Huxley A: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952, 117: 500-544.
Fenton FH, Cherry EM: Models of cardiac cell. Scholarpedia. 2008, 3: 1868-10.4249/scholarpedia.1868.
Puglisi JL, Bers DM: LabHEART: an interactive computer model of rabbit ventricular myocytes ion channels and Ca transport. Am J Physiol. 2001, 281: C2049-C2060.
Luo C, Rudy Y: A dynamic model of the cardiac ventricular action potential - Simulations of ionic currents and concentration changes. Circ Res. 1994, 74: 1071-1097. 10.1161/01.RES.74.6.1071.
Pandit SV, Clark RB, Giles WR, Demir SS: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys J. 2001, 81: 3029-3051. 10.1016/S0006-3495(01)75943-7.
Winslow RL, Rice J, Jafri S, Marban E, O’Rourke B: Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure. II. Model studies. Circ Res. 1999, 84: 571-586. 10.1161/01.RES.84.5.571.
Priebe L, Beuckelmann DJ: Simulation study of cellular electric properties in heart failure. Circ Res. 1998, 82: 1206-1223. 10.1161/01.RES.82.11.1206.
ten Tusscher K, Noble D, Noble PJ, Panfilov AV: A model for human ventricular tissue. Am J Physiol Heart Circ Physiol. 2004, 286: H1573—H1589-
Iyer V, Mazhari R, Winslow RL: A computational model of the human left-ventricular epicardial myocyte. Biophys J. 2004, 87: 1507-1525. 10.1529/biophysj.104.043299.
Grandi E, Pasqualini FS, Bers DM: A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol. 2010, 48: 112-121. 10.1016/j.yjmcc.2009.09.019.
Clancy CE, Rudy Y: Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation. 2002, 105: 1208-1213. 10.1161/hc1002.105183.
FitzHugh R: Impulses and physiological states in theoretical models of nerve membrane. Biophysical J. 1961, 1: 445-466. 10.1016/S0006-3495(61)86902-6.
Nagumo J, Arimoto S, Yoshizawa S: An active pulse transmission line simulating nerve axon. Proc IRE. 1962, 50: 2061-2070.
Aliev RR, Panfilov AV: A simple two-variable model of cardiac excitation. Chaos: Solitons Fractals. 1996, 7: 293-10.1016/0960-0779(95)00089-5.
Fenton F, Karma A: Vortex dynamics in three dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos. 1998, 8: 20-47. 10.1063/1.166311.
Mitchell CC, Schaeffer DG: A two-current model for the dynamics of cardiac membrane. Bull Math Biol. 2003, 65: 767-793. 10.1016/S0092-8240(03)00041-7.
Cherry EM, Fenton FH: Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects. Am J Physiol Heart Circ Physiol. 2004, 286: H2332—H2341-
Cherry EM, Ehrlich JR, Nattel S, Fenton FH: Pulmonary vein reentry–properties and size matter: insights from a computational analysis. Heart Rhythm. 2007, 4: 1553-1562. 10.1016/j.hrthm.2007.08.017.
Bueno-Orovio A, Cherry EM, Fenton FH: Minimal model for human ventricular action potential in tissue. J Theor Biol. 2008, 253: 544-560. 10.1016/j.jtbi.2008.03.029.
Cytrynbaum E, Keener JP: Stability conditions for traveling pulse: modifying the restitution hypothesis. Chaos. 2002, 12: 788-799. 10.1063/1.1503941.
Antzelevitch C: Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am J Physiol Heart Circ Physiol. 2007, 293: H2024-H2038. 10.1152/ajpheart.00355.2007.
Brugada P, Brugada J: Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. J Am Coll Cardiol. 1992, 20: 1391-1396. 10.1016/0735-1097(92)90253-J.
Jervell A, Lange-Nielsen F: Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. A Heart J. 1957, 54: 59-68. 10.1016/0002-8703(57)90079-0.
Li GR, Feng J, Yue L, Carrier M: Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. Am J Physiol. 1998, 275: H369-H377.
Cantalapiedra IR, Peñaranda A, Echebarria B, Bragard J: Phase-2 reentry in cardiac tissue: role of the slow calcium pulse. Phys Rev E. 2010, 82: 011907-
Vetter FJ, McCullogh AD: Three-dimensionnal analysis of regional cardiac function: a model of the rabbit ventricular anatomy. Prog Biophys Mol Biol. 1998, 69: 157-183. 10.1016/S0079-6107(98)00006-6.
Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G: Regional differences in current density and rate-dependent properties of the transient ventricular electrophysiology. Am J Physiol. 1996, 292: H43—H55-
Cantalapiedra IR, Peñaranda A, Mont L, Brugada J, Echebarria B: Reexcitation mechanisms in epicardial tissue: role of I(to) density heterogeneities and I(Na) inactivation kinetics. J Theor Biol. 2009, 259: 850-859. 10.1016/j.jtbi.2009.04.021.
Peñaranda A, Cantalapiedra IR, Echebarria B: Slow pulse due to calcium current induces phase-2 reentry in heterogeneous tissue. Comput Cardiol. 2010, 37: 661-664.
Faber GM, Rudy Y: Action potential and contractility changes in Na+ overloaded cardiac myocytes: a simulation study. Biophys J. 2000, 78: 2392-2404. 10.1016/S0006-3495(00)76783-X.
Webpage with the codes used for the fit and further information.http://www-fa.upc.es/websfa/eupb/NOLIN/CARDIAC/Simp_model.html,
Drouin E, Charpentier F, Gauthier C, Laurent K, LeMarec H: Electro physiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol. 1995, 26: 185-192. 10.1016/0735-1097(95)00167-X.
Morgan JM, Cunningham D, Rowland E: Dispersion of monophasic action potential duration: demonstrable in humans after premature ventricular extrastimulation but not in steady state. J Am Coll Cardiol. 1992, 19: 1244-1253. 10.1016/0735-1097(92)90331-G.
Yue AM, Franz MR, Roberts PR, Morgan JM: Global endocardial electrical restitution in human right and left ventricles determined by noncontact mapping. J Am Coll Cardiol. 46: 1067-1075.
LRd ventricular cell model (guinea-pig-type), source code. [http://rudylab.wustl.edu/research/cell/methodology/cellmodels/LRd/code.htm], []
Bernus O, Wilders R, Zemlin CW, Verschelde H, Panfilov AV: A computationally efficient electrophysiological model of human ventricular cells. Am J Physiol Heart Circ Physiol. 2002, 282: H2296—2308-
Shajahan TK, Nayak AR, Pandit R: Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue. PLoS ONE. 2009, 4: e4738-10.1371/journal.pone.0004738.
Davidenko JM, Pertsov AM, Salomonsz R, Baxter WT, Jalife J: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 1992, 355: 349-351. 10.1038/355349a0.
Fenton FH, Cherry EM, Hastings HM, Evans SJ: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos. 2002, 12 (3): 852-892. 10.1063/1.1504242.
Allison JS, Qin H, Dosdall DJ, Huang J, Newton JC, Allred JD, Smith WM, Ideker RE: The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol. 2007, 18: 306-312.
Baxter WT, Mironov SF, Zaitsev AV, Jalife J, Pertsov AM: excitation waves inside cardiac muscle using transillumination. Biophys J. 2001, 80: 516-530. 10.1016/S0006-3495(01)76034-1.
Bernabeu MO, Corrias A, Pitt-Francis J, Rodriguez B, Bethwaite B, Enticott C, Garic S, Peachey T, Tan J, Abramson D, Gavaghan D: Grid computing simulations of ion channel block effects on the ECG using 3D anatomically-based models. Comput Cardiol. 2009, 36: 213-216.
Bragard J, Marin S, Cherry E, Fenton F: Validation of a model of cardiac defibrillation. To appear in Springer-book (2012)
Aguel F, Eason J, Trayanova N: Advances in modeling cardiac defibrillation. Int J Bifurcation Chaos. 2003, 13: 3791-3805. 10.1142/S0218127403008892.
Katz AM: Physiology of the heart. 2005, Philadelphia: Lippincott Williams & Wilkins
Numerical simulations of electrocardiograms. Edited by: Ambrosi D, Quarteroni A, Rozza G. 2011, Springer
Constanzo LS: Physiology. 2002, Philadelphia, P A: W.B. Saunders
Gussak I, Antzelevitch C: Cardiac Repolarization: Bridging Basic and Clin Sci. 2003, New York: Humana Press, Springer
Abd Allaha ESH, Aslanidic OV, Telleza JO, Yannia J, Billeterd R, Zhangc H, Dobrzynskia H, Boyett MR: Postnatal development of transmural gradients in expression of ion channels and Ca2+ handling proteins in the ventricle. J Mol Cell Cardiol. 2012, 53 (2): 145-155. 10.1016/j.yjmcc.2012.04.004.