Building better dual-ion batteries
Tóm tắt
This perspective article summarizes the operational principles of dual-ion batteries and highlights the main issues in the interpretation and reporting of their electrochemical performance. Secondary dual-ion batteries (DIBs) are emerging stationary energy storage systems that have been actively explored in view of their low cost, high energy efficiency, power density, and long cycling life. Nevertheless, a critical assessment of the literature in this field points to numerous inaccuracies and inconsistencies in reported performance, primarily caused by the exclusion of the capacity of used electrolytes and the use of non-charge-balanced batteries. Ultimately, these omissions have a direct impact on the assessment of the energy and power density of DIBs. Aiming to secure further advancement of DIBs, in this work, we critically review current research pursuits and summarize the operational mechanisms of such batteries. The particular focus of this perspective is put on highlighting the main issues in the interpretation and reporting of the electrochemical performance of DIBs. To this end, we survey the prospects of these stationary storage systems, emphasizing the practical hurdles that remain to be addressed.
Tài liệu tham khảo
Stephan A., Battke B., Beuse M.D., Clausdeinken J.H., and Schmidt T.S.: Limiting the public cost of stationary battery deployment by combining applications. Nat. Energy 1, 16079 (2016).
Comello S. and Reichelstein S.: The emergence of cost effective battery storage. Nat. Commun. 10, 2038 (2019).
Sui Y., Liu C., Masse R.C., Neale Z.G., Atif M., AlSalhi M., and Cao G.: Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Mater. 25, 1–32 (2020).
Hao J., Li X., Song X., and Guo Z.: Recent progress and perspectives on dual-ion batteries. EnergyChem 1, 100004 (2019).
Placke T., Heckmann A., Schmuch R., Meister P., Beltrop K., and Winter M.: Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018).
Shpigel N., Malchik F., Levi M.D., Gavriel B., Bergman G., Tirosh S., Leifer N., Goobes G., Cohen R., Weitman M., Aviv H., Tischler Y.R., Aurbach D., and Gogotsi Y.: New aqueous energy storage devices comprising graphite cathodes, MXene anodes and concentrated sulfuric acid solutions. Energy Storage Mater. 32, 1–10 (2020).
Shi X., Deng T., and Zhu G.: MXene as a tolerable anode material accommodating large ions in dual-ion batteries. Ceram. Int. 46, 24887–24892 (2020).
Huang Y., Xiao R., Ma Z., and Zhu W.: Developing dual-graphite batteries with pure 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid as the electrolyte. ChemElectroChem 6, 4681–4688 (2019).
Fang Y., Chen C., Fan J., Zhang M., Yuan W., and Li L.: Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 5,7,12,14-pentacenetetrone from a pure ionic liquid electrolyte for dual-ion batteries. ChemComm 55, 8333–8336 (2019).
Kravchyk K.V., Bhauriyal P., Piveteau L., Guntlin C.P., Pathak B., and Kovalenko M.V.: High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun. 9, 4469 (2018).
Dubey R.J.C., Nüssli J., Piveteau L., Kravchyk K.V., Rossell M.D., Campanini M., Erni R., Kovalenko M.V., and Stadie N.P.: Zeolite-templated carbon as the cathode for a high energy density dual-ion battery. ACS Appl. Mater. Interfaces 11, 17686–17696 (2019).
Walter M., Kravchyk K.V., Ibáñez M., and Kovalenko M.V.: Efficient and inexpensive sodium–magnesium hybrid battery. Chem. Mater. 27, 7452–7458 (2015).
Kravchyk K.V., Wang S., Piveteau L., and Kovalenko M.V.: Efficient aluminum chloride natural graphite battery. Chem. Mater. 29, 4484–4492 (2017).
Fan H., Qi L., Yoshio M., and Wang H.: Hexafluorophosphate intercalation into graphite electrode from ethylene carbonate/ethylmethyl carbonate. Solid State Ionics 304, 107–112 (2017).
Fan H., Qi L., and Wang H.: Intercalation behavior of hexafluorophosphate into graphite electrode from propylene/ethylmethyl carbonates. J. Electrochem. Soc. 164, A2262–A2267 (2017).
Fan H., Qi L., and Wang H.: Hexafluorophosphate anion intercalation into graphite electrode from methyl propionate. Solid State Ionics 300, 169–174 (2017).
Heckmann A., Thienenkamp J., Beltrop K., Winter M., Brunklaus G., and Placke T.: Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes. Electrochim. Acta 260, 514–525 (2018).
Balabajew M., Kranz T., and Roling B.: Ion-transport processes in dual-Ion cells utilizing a Pyr1,4TFSI/LiTFSI mixture as the electrolyte. ChemElectroChem 2, 1991–2000 (2015).
Meister P., Siozios V., Reiter J., Klamor S., Rothermel S., Fromm O., Meyer H.-W., Winter M., and Placke T.: Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite. Electrochim. Acta 130, 625–633 (2014).
Huang Y., Qi L., and Wang H.: Intercalation of anions into graphite electrode from butylene carbonate in activated carbon/graphite hybrid capacitors. Electrochim. Acta 258, 380–387 (2017).
Gao J., Yoshio M., Qi L., and Wang H.: Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources 278, 452–457 (2015).
Gao J., Tian S., Qi L., and Wang H.: Intercalation manners of perchlorate anion into graphite electrode from organic solutions. Electrochim. Acta 176, 22–27 (2015).
Yagi S., Ichitsubo T., Shirai Y., Yanai S., Doi T., Murase K., and Matsubara E.: A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2, 1144–1149 (2014).
Kravchyk K.V., Walter M., and Kovalenko M.V.: A high-voltage concept with sodium-ion conducting β-alumina for magnesium-sodium dual-ion batteries. Commun. Chem. 2, 84 (2019).
Kravchyk K.V. and Kovalenko M.V.: Rechargeable dual-ion batteries with graphite as a cathode: Key challenges and opportunities. Adv. Energy Mater. 9, 1901749 (2019).
Holoubek J., Yin Y., Li M., Yu M., Meng Y.S., Liu P., and Chen Z.: Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. Engl. 58, 18892–18897 (2019).
Li Q., Lu D., Zheng J., Jiao S., Luo L., Wang C.-M., Xu K., Zhang J.-G., and Xu W.: Li-desolvation dictating lithium-ion battery's low-temperature performances. ACS Appl. Mater. Interfaces 9, 42761–42768 (2017).
Zhang S.S., Xu K., and Jow T.R.: The low temperature performance of Li-ion batteries. J. Power Sources 115, 137–140 (2003).
Wang M., Zhang F., Lee C.-S., and Tang Y.: Low-cost metallic anode materials for high performance rechargeable batteries. Adv. Energy Mater. 7, 1700536 (2017).
Ji B., Zhang F., Song X., and Tang Y.: A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017).
Zhang X., Tang Y., Zhang F., and Lee C.-S.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016).
Tong X., Zhang F., Ji B., Sheng M., and Tang Y.: Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-Ion batteries. Adv. Mater. 28, 9979–9985 (2016).
Yu D., Cheng L., Chen M., Wang J., Zhou W., Wei W., and Wang H.: High-performance phosphorus–graphite dual-ion battery. ACS Appl. Mater. Interfaces 11, 45755–45762 (2019).
Gunawardhana N., Park G.-J., Dimov N., Thapa A.K., Nakamura H., Wang H., Ishihara T., and Yoshio M.: Constructing a novel and safer energy storing system using a graphite cathode and a MoO3 anode. J. Power Sources 196, 7886–7890 (2011).
Fan J., Fang Y., Xiao Q., Huang R., Li L., and Yuan W.: A dual-ion battery with a ferric ferricyanide anode enabling reversible Na intercalation. Energy Technol. 7, 1800978 (2019).
Deunf É, Jiménez P., Guyomard D., Dolhem F., and Poizot P.: A dual-ion battery using diamino–rubicene as anion–inserting positive electrode material. Electrochem. Commun. 72, 64–68 (2016).
Rodríguez-Pérez I.A., Jian Z., Waldenmaier P.K., Palmisano J.W., Chandrabose R.S., Wang X., Lerner M.M., Carter R.G., and Ji X.: A hydrocarbon cathode for dual-ion batteries. ACS Energy Lett. 1, 719–723 (2016).
Deunf É, Moreau P., Quarez É, Guyomard D., Dolhem F., and Poizot P.: Reversible anion intercalation in a layered aromatic amine: A high-voltage host structure for organic batteries. Carbon 4, 6131–6139 (2016).
Aubrey M.L. and Long J.R.: A dual-ion battery cathode via oxidative insertion of anions in a metal–organic framework. J. Am. Chem. Soc. 137, 13594–13602 (2015).
Li C., Yang H., Xie J., Wang K., Li J., and Zhang Q.: Ferrocene-based mixed-valence metal–organic framework as an efficient and stable cathode for lithium-ion-based dual-ion battery. ACS Appl. Mater. Interfaces 12, 32719–32725 (2020).
Chen C.-Y., Matsumoto K., Kubota K., Hagiwara R., and Xu Q.: An energy-dense solvent-free dual-ion battery. Adv. Funct. Mater. 30, 2003557 ( 2020).
Li Y., An Q., Cheng Y., Liang Y., Ren Y., Sun C.-J., Dong H., Tang Z., Li G., and Yao Y.: A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy 34, 188–194 (2017).
Rashad M., Li X., and Zhang H.: Magnesium/lithium-ion hybrid battery with high reversibility by employing NaV3O8⋅1.69H2O nanobelts as a positive electrode. ACS Appl. Mater. Interfaces 10, 21313–21320 (2018).
Lin M.-C., Gong M., Lu B., Wu Y., Wang D.-Y., Guan M., Angell M., Chen C., Yang J., Hwang B.-J., and Dai H.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).
Wu Y., Gong M., Lin M.-C., Yuan C., Angell M., Huang L., Wang D.-Y., Zhang X., Yang J., Hwang B.-J., and Dai H.: 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 28, 9218–9222 (2016).
Yu X., Wang B., Gong D., Xu Z., and Lu B.: Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv. Mater. 29, 1604118 (2017).
Song Y., Jiao S., Tu J., Wang J., Liu Y., Jiao H., Mao X., Guo Z., and Fray D.J.: A long-life rechargeable Al ion battery based on molten salts. J. Mater. Chem. A 5, 1282–1291 (2017).
Yang G.Y., Chen L., Jiang P., Guo Z.Y., Wang W., and Liu Z.P.: Fabrication of tunable 3D graphene mesh network with enhanced electrical and thermal properties for high-rate aluminum-ion battery application. RSC Adv. 6, 47655–47660 (2016).
Zhang L., Chen L., Luo H., Zhou X., and Liu Z.: Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv. Energy Mater. 7, 1700034 (2017).
Jiao S., Lei H., Tu J., Zhu J., Wang J., and Mao X.: An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 109, 276–281 (2016).
Sun H., Wang W., Yu Z., Yuan Y., Wang S., and Jiao S.: A new aluminium-ion battery with high voltage, high safety and low cost. ChemComm 51, 11892–11895 (2015).
Stadie N.P., Wang S., Kravchyk K.V., and Kovalenko M.V.: Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano 11, 1911–1919 (2017).
Hudak N.S.: Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. J. Phys. Chem. C 118, 5203–5215 (2014).
Walter M., Kravchyk K.V., Böfer C., Widmer R., and Kovalenko M.V.: Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 30, 1705644 (2018).
Lai P.K. and Skyllas-Kazacos M.: Aluminium deposition and dissolution in aluminium chloride-n-butylpyridinium chloride melts. Electrochim. Acta 32, 1443–1449 (1987).
Chao-Cheng Y.: Electrodeposition of aluminum in molten AlCl3-n-butylpyridinium chloride electrolyte. Mater. Chem. Phys. 37, 355–361 (1994).
Zhao Y. and VanderNoot T.J.: Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochim. Acta 42, 3–13 (1997).
Jiang T., Chollier Brym M.J., Dubé G., Lasia A., and Brisard G.M.: Electrodeposition of aluminium from ionic liquids: Part I—Electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf. Coat. Technol. 201, 1–9 (2006).
Jiang T., Chollier Brym M.J., Dubé G., Lasia A., and Brisard G.M.: Electrodeposition of aluminium from ionic liquids: Part II—Studies on the electrodeposition of aluminum from aluminum chloride (AICl3)-trimethylphenylammonium chloride (TMPAC) ionic liquids. Surf. Coat. Technol. 201, 10–18 (2006).
Tu J., Wang S., Li S., Wang C., Sun D., and Jiao S.: The effects of anions behaviors on electrochemical properties of Al/graphite rechargeable aluminum-ion battery via molten AlCl3-NaCl liquid electrolyte. J. Electrochem. Soc. 164, A3292–A3302 (2017).
Abood H.M.A., Abbott A.P., Ballantyne A.D., and Ryder K.S.: Do all ionic liquids need organic cations? Characterisation of [AlCl2⋅nAmide]AlCl4 and comparison with imidazolium based systems. Chem. Commun. 47, 3523–3525 (2011).
Abbott A.P., Harris R.C., Hsieh Y.-T., Ryder K.S., and Sun I.W.: Aluminium electrodeposition under ambient conditions. Phys. Chem. Chem. Phys. 16, 14675–14681 (2014).
Smith E.L., Abbott A.P., and Ryder K.S.: Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014).
Golubkov A.W., Fuchs D., Wagner J., Wiltsche H., Stangl C., Fauler G., Voitic G., Thaler A., and Hacker V.: Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 4, 3633–3642 (2014).
Kravchyk K.V., Seno C., and Kovalenko M.V.: Limitations of chloroaluminate ionic liquid anolytes for aluminum–graphite dual-ion batteries. ACS Energy Lett. 5, 545–549 (2020).
Betz J., Bieker G., Meister P., Placke T., Winter M., and Schmuch R.: Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).
Chiara Ferrara, Valentina Dall’Asta, Vittorio Berbenni, Eliana Quartarone and Piercarlo Mustarelli: Physicochemical characterization of AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid electrolytes for aluminum rechargeable batteries. J. Phys. Chem. C 121, 26607–26614 (2017).